bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0399
- Precision: 0.9513
- Recall: 0.9559
- F1: 0.9536
- Accuracy: 0.9922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0548 | 1.0 | 1756 | 0.0438 | 0.9368 | 0.9411 | 0.9390 | 0.9900 |
0.021 | 2.0 | 3512 | 0.0395 | 0.9446 | 0.9519 | 0.9482 | 0.9914 |
0.0108 | 3.0 | 5268 | 0.0399 | 0.9513 | 0.9559 | 0.9536 | 0.9922 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train Applemoon/bert-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.951
- Recall on conll2003self-reported0.956
- F1 on conll2003self-reported0.954
- Accuracy on conll2003self-reported0.992