|
--- |
|
language: |
|
- fa |
|
tags: |
|
- Wikipedia |
|
- Summarizer |
|
- bert2bert |
|
- Summarization |
|
task_categories: |
|
- Summarization |
|
- text generation |
|
task_ids: |
|
- news-articles-summarization |
|
license: |
|
- apache-2.0 |
|
multilinguality: |
|
- monolingual |
|
datasets: |
|
- pn-summary |
|
- XL-Sum |
|
metrics: |
|
- rouge-1 |
|
- rouge-2 |
|
- rouge-l |
|
--- |
|
|
|
|
|
# WikiBert2WikiBert |
|
Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets. |
|
|
|
## How to Use: |
|
You can use the code below to get the model's outputs, or you can simply use the demo on the right. |
|
``` |
|
from transformers import ( |
|
BertTokenizerFast, |
|
EncoderDecoderConfig, |
|
EncoderDecoderModel, |
|
BertConfig |
|
) |
|
|
|
model_name = 'Arashasg/WikiBert2WikiBert' |
|
tokenizer = BertTokenizerFast.from_pretrained(model_name) |
|
config = EncoderDecoderConfig.from_pretrained(model_name) |
|
model = EncoderDecoderModel.from_pretrained(model_name, config=config) |
|
|
|
|
|
def generate_summary(text): |
|
inputs = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt") |
|
input_ids = inputs.input_ids.to("cuda") |
|
attention_mask = inputs.attention_mask.to("cuda") |
|
|
|
outputs = model.generate(input_ids, attention_mask=attention_mask) |
|
|
|
output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
|
|
return output_str |
|
|
|
input = 'your input comes here' |
|
summary = generate_summary(input) |
|
``` |
|
|
|
## Evaluation |
|
I separated 5 percent of the pn-summary for evaluation of the model. The rouge scores of the model are as follows: |
|
|
|
| Rouge-1 | Rouge-2 | Rouge-l | |
|
| ------------- | ------------- | ------------- | |
|
| 38.97% | 18.42% | 34.50% | |
|
|
|
|