layoutlm-funsd / README.md
Archana02's picture
End of training
0f20a25
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7407
  • Education: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
  • Email: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Github: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0}
  • Location: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
  • Name: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Name : {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2}
  • Phone Number: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Soft Skills: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0}
  • Technical Skills: {'precision': 0.2, 'recall': 0.35714285714285715, 'f1': 0.25641025641025644, 'number': 14}
  • Overall Precision: 0.1176
  • Overall Recall: 0.2
  • Overall F1: 0.1481
  • Overall Accuracy: 0.1475

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Education Email Github Linkedin Location Name Name Phone Number Soft Skills Technical Skills Overall Precision Overall Recall Overall F1 Overall Accuracy
2.9387 1.0 2 2.8701 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.14285714285714285, 'recall': 0.5, 'f1': 0.22222222222222224, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} 0.0185 0.0333 0.0238 0.0328
2.6716 2.0 4 2.7798 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.10526315789473684, 'recall': 0.14285714285714285, 'f1': 0.12121212121212122, 'number': 14} 0.0612 0.1 0.0759 0.1311
2.5524 3.0 6 2.7407 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.2, 'recall': 0.35714285714285715, 'f1': 0.25641025641025644, 'number': 14} 0.1176 0.2 0.1481 0.1475

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1