mbert-multirc
This model is a fine-tuned version of bert-base-multilingual-uncased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6812
- Accuracy: 0.5759
- F1: 0.5048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6862 | 1.0 | 1703 | 0.6812 | 0.5759 | 0.5048 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Areepatw/mbert-multirc
Base model
google-bert/bert-base-multilingual-uncasedDataset used to train Areepatw/mbert-multirc
Evaluation results
- Accuracy on super_gluevalidation set self-reported0.576
- F1 on super_gluevalidation set self-reported0.505