headlight_12_12_2024_google_vit-base-patch16-224-in21k

This model is a fine-tuned version of ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2587
  • Accuracy: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9995 492 0.2682 0.8973
0.1998 1.9990 984 0.2701 0.8982
0.1988 2.9985 1476 0.2708 0.8974
0.1976 4.0 1969 0.2609 0.9013
0.2131 4.9995 2461 0.2584 0.9011
0.2169 5.9970 2952 0.2587 0.9015

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
15
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ArtiSikhwal/headlight_12_12_2024_google_vit-base-patch16-224-in21k

Evaluation results