|
--- |
|
library_name: peft |
|
tags: |
|
- autotrain |
|
- meta-llama |
|
- meta-llama/Llama-2-7b-hf |
|
inference: false |
|
widget: |
|
- text: 'instruction: "If you are a doctor, please answer the medical questions based |
|
on the patient''s description." |
|
|
|
input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. |
|
I am having some major bilateral temple pain along with numbness that comes and |
|
goes in my left arm/hand/fingers. I have had headaches since the aneurysm, but |
|
this is different. Also, my moods have been horrible for the past few weeks." |
|
|
|
response: '''' |
|
|
|
' |
|
pipeline_tag: text-generation |
|
base_model: meta-llama/Llama-2-7b-hf |
|
--- |
|
llama-2-7b-hf model finetuned for medical consultation. Works on T4 GPU (16GB VRAM), as well as CPU (32GB RAM) |
|
|
|
**To run on GPU :** |
|
|
|
```python |
|
import transformers |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from torch import cuda, bfloat16 |
|
|
|
base_model_id = 'meta-llama/Llama-2-7b-chat-hf' |
|
|
|
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' |
|
|
|
bnb_config = transformers.BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=bfloat16 |
|
) |
|
|
|
|
|
hf_auth = "your-huggingface-access-token" |
|
model_config = transformers.AutoConfig.from_pretrained( |
|
base_model_id, |
|
use_auth_token=hf_auth |
|
) |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
trust_remote_code=True, |
|
config=model_config, |
|
quantization_config=bnb_config, |
|
device_map='auto', |
|
use_auth_token=hf_auth |
|
) |
|
|
|
config = PeftConfig.from_pretrained("Ashishkr/llama-2-medical-consultation") |
|
model = PeftModel.from_pretrained(model, "Ashishkr/llama-2-medical-consultation").to(device) |
|
|
|
model.eval() |
|
print(f"Model loaded on {device}") |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
base_model_id, |
|
use_auth_token=hf_auth |
|
) |
|
|
|
|
|
|
|
``` |
|
|
|
|
|
|
|
```python |
|
def llama_generate( |
|
model: AutoModelForCausalLM, |
|
tokenizer: AutoTokenizer, |
|
prompt: str, |
|
max_new_tokens: int = 128, |
|
temperature: float = 0.92): |
|
|
|
inputs = tokenizer( |
|
[prompt], |
|
return_tensors="pt", |
|
return_token_type_ids=False, |
|
).to( |
|
device |
|
) |
|
|
|
# Check if bfloat16 is supported, otherwise use float16 |
|
dtype_to_use = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 |
|
|
|
with torch.autocast("cuda", dtype=dtype_to_use): |
|
response = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
return_dict_in_generate=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
decoded_output = tokenizer.decode( |
|
response["sequences"][0], |
|
skip_special_tokens=True, |
|
) |
|
|
|
return decoded_output[len(prompt) :] |
|
|
|
prompt = """ |
|
instruction: "If you are a doctor, please answer the medical questions based on the patient's description." \n |
|
|
|
input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. |
|
I am having some major bilateral temple pain along with numbness that comes and |
|
goes in my left arm/hand/fingers. I have had headaches since the aneurysm, |
|
but this is different. Also, my moods have been horrible for the past few weeks.\n |
|
|
|
response: """ |
|
# You can use the function as before |
|
response = llama_generate( |
|
model, |
|
tokenizer, |
|
prompt, |
|
max_new_tokens=100, |
|
temperature=0.92, |
|
) |
|
|
|
print(response) |
|
|
|
|
|
``` |
|
|
|
**To run on CPU** |
|
|
|
|
|
```python |
|
|
|
|
|
import torch |
|
import transformers |
|
from torch import cuda, bfloat16 |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
base_model_id = 'meta-llama/Llama-2-7b-chat-hf' |
|
|
|
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' |
|
|
|
bnb_config = transformers.BitsAndBytesConfig( |
|
llm_int8_enable_fp32_cpu_offload = True |
|
) |
|
|
|
import torch |
|
hf_auth = "YOUR-HUGGINGFACE-ACCESS-TOKEN" |
|
model_config = transformers.AutoConfig.from_pretrained( |
|
base_model_id, |
|
use_auth_token=hf_auth |
|
) |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
trust_remote_code=True, |
|
config=model_config, |
|
quantization_config=bnb_config, |
|
# device_map='auto', |
|
use_auth_token=hf_auth |
|
) |
|
|
|
config = PeftConfig.from_pretrained("Ashishkr/llama-2-medical-consultation") |
|
model = PeftModel.from_pretrained(model, "Ashishkr/llama-2-medical-consultation").to(device) |
|
|
|
model.eval() |
|
print(f"Model loaded on {device}") |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
base_model_id, |
|
use_auth_token=hf_auth |
|
) |
|
|
|
def llama_generate( |
|
model: AutoModelForCausalLM, |
|
tokenizer: AutoTokenizer, |
|
prompt: str, |
|
max_new_tokens: int = 128, |
|
temperature: float = 0.92): |
|
|
|
inputs = tokenizer( |
|
[prompt], |
|
return_tensors="pt", |
|
return_token_type_ids=False, |
|
).to( |
|
device |
|
) |
|
|
|
# Check if bfloat16 is supported, otherwise use float16 |
|
dtype_to_use = torch.float32 |
|
with torch.autocast("cuda", dtype=dtype_to_use): |
|
response = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
return_dict_in_generate=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
decoded_output = tokenizer.decode( |
|
response["sequences"][0], |
|
skip_special_tokens=True, |
|
) |
|
|
|
return decoded_output[len(prompt) :] |
|
|
|
prompt = """ |
|
instruction: "If you are a doctor, please answer the medical questions based on the patient's description." \n |
|
|
|
input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. |
|
I am having some major bilateral temple pain along with numbness that comes and |
|
goes in my left arm/hand/fingers. I have had headaches since the aneurysm, |
|
but this is different. Also, my moods have been horrible for the past few weeks.\n |
|
|
|
response: """ |
|
# You can use the function as before |
|
response = llama_generate( |
|
model, |
|
tokenizer, |
|
prompt, |
|
max_new_tokens=100, |
|
temperature=0.92, |
|
) |
|
|
|
print(response) |
|
|
|
``` |
|
|