qwen_checkpoints / README.md
Ashley37sky's picture
Model save
c4d6390 verified
metadata
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
  - generated_from_trainer
model-index:
  - name: qwen_checkpoints
    results: []

qwen_checkpoints

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0618
  • Mse: 0.0618
  • Mae: 0.1983
  • R Squared: 0.3107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mae Mse R Squared
0.0856 0.1558 100 0.0878 0.2351 0.0878 0.0207
0.0843 0.3115 200 0.0803 0.2314 0.0803 0.1045
0.0851 0.4673 300 0.0882 0.2278 0.0882 0.0168
0.0676 0.6231 400 0.0716 0.2183 0.0716 0.2014
0.0737 0.7788 500 0.0691 0.2164 0.0691 0.2291
0.0694 0.9346 600 0.0696 0.2157 0.0696 0.2242
0.0569 1.0903 700 0.0661 0.2049 0.0661 0.2627
0.0589 1.2461 800 0.0663 0.2045 0.0663 0.2606
0.0648 1.4019 900 0.0649 0.2039 0.0649 0.2764
0.0652 1.5576 1000 0.0644 0.2027 0.0644 0.2813
0.0657 1.7134 1100 0.0649 0.0649 0.2082 0.2763
0.0577 1.8692 1200 0.0639 0.0639 0.2022 0.2869
0.0564 2.0249 1300 0.0636 0.0636 0.2006 0.2902
0.0613 2.1807 1400 0.0633 0.0633 0.1989 0.2939
0.0596 2.3364 1500 0.0624 0.0624 0.1999 0.3036
0.0547 2.4922 1600 0.0621 0.0621 0.1985 0.3076
0.0554 2.6480 1700 0.0620 0.0620 0.1974 0.3087
0.0581 2.8037 1800 0.0618 0.0618 0.1983 0.3107
0.0653 2.9595 1900 0.0618 0.0618 0.1983 0.3107

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3