CodeLlama_7B_nlp_pp / README.md
AshtonIsNotHere's picture
Update README.md
92898a6
metadata
license: llama2
tags:
  - generated_from_trainer
datasets:
  - AshtonIsNotHere/nlp_pp_code_dataset
metrics:
  - accuracy
model-index:
  - name: CodeLlama_7B_nlp_pp
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: AshtonIsNotHere/nlp_pp_code_dataset
          type: AshtonIsNotHere/nlp_pp_code_dataset
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8968056729128353

CodeLlama_7B_nlp_pp

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the AshtonIsNotHere/nlp_pp_code_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4129
  • Accuracy: 0.8968

Model description

This model has been fine-tuned for code completion on a dataset of NLP++ code.

Intended uses & limitations

More information needed

Training and evaluation data

Dataset consists of a combination of scraped NLP++ code and NLP++ code examples from the VisualText website.

Training procedure

This model is trained in a multinode, multi-gpu setup with DeepSpeed Z3. For more information on the training setup, check out the GitHub repo.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 61 0.5100 0.8726
No log 1.99 122 0.4129 0.8968
No log 2.99 183 0.4166 0.9072
No log 4.0 245 0.4595 0.9090
No log 5.0 306 0.5181 0.9093
No log 5.99 367 0.5553 0.9090
No log 6.97 427 0.5603 0.9089

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3