|
--- |
|
language: |
|
- en |
|
license: mit |
|
datasets: |
|
- OllieStanley/humaneval-mbpp-codegen-qa |
|
- OllieStanley/humaneval-mbpp-testgen-qa |
|
--- |
|
|
|
This repo contains a low-rank adapter for LLaMA-7b fit on the data containing a request to write a python function. |
|
|
|
### How to use (8-bit) |
|
|
|
```python |
|
import torch |
|
from peft import PeftModel |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-13b-hf") |
|
|
|
model = LLaMAForCausalLM.from_pretrained( |
|
"decapoda-research/llama-7b-hf", |
|
load_in_8bit=True, |
|
device_map="auto", |
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained(model, "Aspik101/Alpaca7b_python_assistant") |
|
|
|
|
|
def get_answer(question, model_version = model): |
|
PROMPT =f'''Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{question} |
|
|
|
### Response: |
|
''' |
|
|
|
inputs = tokenizer( |
|
PROMPT, |
|
return_tensors="pt", |
|
) |
|
input_ids = inputs["input_ids"].cuda() |
|
|
|
generation_config = GenerationConfig( |
|
temperature=0.2, |
|
top_p=0.95, |
|
repetition_penalty=1.15, |
|
) |
|
print("Generating...") |
|
generation_output = model_version.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=128, |
|
) |
|
|
|
sentences = " ".join([tokenizer.decode(s) for s in generation_output.sequences]) |
|
print(sentences.split("Response:\n")[1]) |
|
|
|
``` |
|
|