Augusto777's picture
End of training
cf7506a verified
|
raw
history blame
3.7 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-dmae-va-U-40
    results: []

swiftformer-xs-dmae-va-U-40

This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7007
  • Accuracy: 0.7523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 1.3578 0.2936
1.3702 1.94 15 1.3703 0.2936
1.3497 2.97 23 1.3361 0.3394
1.3004 4.0 31 1.2852 0.3670
1.3004 4.9 38 1.2317 0.4312
1.2248 5.94 46 1.1786 0.4587
1.1485 6.97 54 1.1240 0.5046
1.0759 8.0 62 1.0727 0.5505
1.0759 8.9 69 1.0404 0.5596
1.0244 9.94 77 0.9742 0.6239
0.9782 10.97 85 0.9374 0.6422
0.9359 12.0 93 0.9197 0.6789
0.9051 12.9 100 0.8753 0.6881
0.9051 13.94 108 0.8679 0.6972
0.8652 14.97 116 0.8316 0.7156
0.8336 16.0 124 0.8222 0.6972
0.8177 16.9 131 0.8178 0.6972
0.8177 17.94 139 0.7818 0.7339
0.8077 18.97 147 0.7627 0.7339
0.7796 20.0 155 0.7478 0.7339
0.7673 20.9 162 0.7415 0.7431
0.7445 21.94 170 0.7414 0.7156
0.7445 22.97 178 0.7375 0.7156
0.7413 24.0 186 0.7354 0.7156
0.739 24.9 193 0.7110 0.7431
0.6992 25.94 201 0.7121 0.7339
0.6992 26.97 209 0.7044 0.7431
0.7111 28.0 217 0.6947 0.7339
0.7013 28.9 224 0.7007 0.7523
0.712 29.94 232 0.6793 0.7431
0.671 30.97 240 0.6808 0.7431
0.671 32.0 248 0.6821 0.7339
0.6862 32.9 255 0.6705 0.7339
0.6606 33.94 263 0.6784 0.7431
0.6667 34.97 271 0.6764 0.7523
0.6667 36.0 279 0.6717 0.7523
0.6687 36.13 280 0.6736 0.7523

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1