Augusto777's picture
End of training
52628f0 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-ve-U13-b-80b
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.782608695652174

swin-tiny-patch4-window7-224-ve-U13-b-80b

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6122
  • Accuracy: 0.7826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3855 0.1304
1.3852 2.0 13 1.3762 0.2826
1.3852 2.92 19 1.3521 0.2826
1.3565 4.0 26 1.2510 0.3478
1.2024 4.92 32 1.1528 0.3478
1.2024 6.0 39 1.0294 0.5
1.0453 6.92 45 0.9608 0.5217
0.8827 8.0 52 0.8801 0.6087
0.8827 8.92 58 0.9884 0.5652
0.7887 10.0 65 0.7927 0.6522
0.6795 10.92 71 0.7237 0.6522
0.6795 12.0 78 0.7250 0.6739
0.5777 12.92 84 0.7140 0.6957
0.496 14.0 91 0.8014 0.6957
0.496 14.92 97 0.8701 0.6739
0.4224 16.0 104 0.9384 0.6522
0.3744 16.92 110 0.7594 0.7174
0.3744 18.0 117 0.6122 0.7826
0.3775 18.92 123 0.8143 0.7174
0.3275 20.0 130 0.9981 0.6522
0.3275 20.92 136 0.8603 0.7174
0.3202 22.0 143 0.8412 0.6957
0.3202 22.92 149 0.8654 0.7174
0.2849 24.0 156 0.9650 0.6957
0.2518 24.92 162 0.8102 0.7609
0.2518 26.0 169 0.7203 0.7826
0.2467 26.92 175 0.9435 0.7391
0.2218 28.0 182 0.8905 0.7391
0.2218 28.92 188 1.0828 0.6957
0.2075 30.0 195 0.8936 0.7174
0.1893 30.92 201 0.8836 0.7826
0.1893 32.0 208 0.9692 0.7174
0.194 32.92 214 1.0390 0.7609
0.1739 34.0 221 0.8695 0.7609
0.1739 34.92 227 1.1836 0.6739
0.1895 36.0 234 1.0131 0.7391
0.1428 36.92 240 0.9618 0.7609
0.1428 38.0 247 0.9950 0.7609
0.1443 38.92 253 0.9113 0.7826
0.1574 40.0 260 0.9213 0.7174
0.1574 40.92 266 0.9437 0.7391
0.1442 42.0 273 0.9226 0.7609
0.1442 42.92 279 0.9430 0.7391
0.1186 44.0 286 0.9759 0.7826
0.1135 44.92 292 0.9651 0.7391
0.1135 46.0 299 0.9536 0.7609
0.1299 46.92 305 0.9118 0.7609
0.134 48.0 312 0.9848 0.7826
0.134 48.92 318 0.8641 0.7609
0.1418 50.0 325 1.0553 0.7609
0.1074 50.92 331 1.2511 0.6957
0.1074 52.0 338 1.0186 0.7391
0.1144 52.92 344 1.0467 0.7174
0.0999 54.0 351 0.9898 0.7391
0.0999 54.92 357 1.1780 0.7391
0.1131 56.0 364 1.0015 0.7609
0.1152 56.92 370 1.0759 0.7609
0.1152 58.0 377 1.1294 0.7174
0.1012 58.92 383 1.0894 0.7391
0.0938 60.0 390 1.0764 0.7391
0.0938 60.92 396 1.1784 0.7174
0.0944 62.0 403 1.1581 0.7174
0.0944 62.92 409 1.0444 0.7391
0.1015 64.0 416 1.0996 0.7391
0.0762 64.92 422 1.1235 0.7609
0.0762 66.0 429 1.0999 0.7391
0.0775 66.92 435 1.0776 0.7391
0.0787 68.0 442 1.0879 0.7391
0.0787 68.92 448 1.0913 0.7391
0.081 70.0 455 1.0558 0.7391
0.0749 70.92 461 1.0401 0.7391
0.0749 72.0 468 1.0539 0.7391
0.0841 72.92 474 1.0663 0.7391
0.0928 73.85 480 1.0712 0.7391

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0