|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: swinv2-finetuned-ve-Ub200
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: validation
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.47058823529411764
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# swinv2-finetuned-ve-Ub200
|
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.5977
|
|
- Accuracy: 0.4706
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 2
|
|
- total_train_batch_size: 32
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| No log | 0.92 | 6 | 7.9891 | 0.0980 |
|
|
| No log | 2.0 | 13 | 7.4848 | 0.0980 |
|
|
| No log | 2.92 | 19 | 6.2378 | 0.0980 |
|
|
| No log | 4.0 | 26 | 4.8900 | 0.0980 |
|
|
| No log | 4.92 | 32 | 3.8155 | 0.0980 |
|
|
| No log | 6.0 | 39 | 2.7342 | 0.0980 |
|
|
| No log | 6.92 | 45 | 2.0612 | 0.0980 |
|
|
| No log | 8.0 | 52 | 1.5977 | 0.4706 |
|
|
| No log | 8.92 | 58 | 1.3671 | 0.4706 |
|
|
| No log | 10.0 | 65 | 1.2122 | 0.4706 |
|
|
| No log | 10.92 | 71 | 1.1823 | 0.4706 |
|
|
| No log | 12.0 | 78 | 1.1835 | 0.4706 |
|
|
| No log | 12.92 | 84 | 1.1838 | 0.4706 |
|
|
| No log | 14.0 | 91 | 1.1778 | 0.4706 |
|
|
| No log | 14.92 | 97 | 1.1769 | 0.4706 |
|
|
| 3.2267 | 16.0 | 104 | 1.1762 | 0.4706 |
|
|
| 3.2267 | 16.92 | 110 | 1.1758 | 0.4706 |
|
|
| 3.2267 | 18.0 | 117 | 1.1770 | 0.4706 |
|
|
| 3.2267 | 18.46 | 120 | 1.1771 | 0.4706 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|