metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-ve-U13-b-80c
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.782608695652174
swinv2-tiny-patch4-window8-256-ve-U13-b-80c
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7710
- Accuracy: 0.7826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.92 | 6 | 1.6333 | 0.1087 |
1.4981 | 2.0 | 13 | 1.6225 | 0.1087 |
1.4981 | 2.92 | 19 | 1.5921 | 0.1087 |
1.4704 | 4.0 | 26 | 1.5001 | 0.1087 |
1.4116 | 4.92 | 32 | 1.4078 | 0.1087 |
1.4116 | 6.0 | 39 | 1.2960 | 0.3478 |
1.3094 | 6.92 | 45 | 1.2926 | 0.3043 |
1.2014 | 8.0 | 52 | 1.1532 | 0.5435 |
1.2014 | 8.92 | 58 | 1.1059 | 0.4783 |
1.0577 | 10.0 | 65 | 0.9510 | 0.6304 |
0.9185 | 10.92 | 71 | 0.9695 | 0.4783 |
0.9185 | 12.0 | 78 | 0.8792 | 0.6087 |
0.8369 | 12.92 | 84 | 0.8616 | 0.6957 |
0.7406 | 14.0 | 91 | 0.7816 | 0.6957 |
0.7406 | 14.92 | 97 | 0.7638 | 0.7609 |
0.6929 | 16.0 | 104 | 0.7710 | 0.7826 |
0.6192 | 16.92 | 110 | 0.7471 | 0.6957 |
0.6192 | 18.0 | 117 | 0.7265 | 0.7391 |
0.5936 | 18.92 | 123 | 0.7841 | 0.7609 |
0.5125 | 20.0 | 130 | 0.9320 | 0.6739 |
0.5125 | 20.92 | 136 | 0.7512 | 0.7609 |
0.4905 | 22.0 | 143 | 0.7466 | 0.6957 |
0.4905 | 22.92 | 149 | 0.8030 | 0.6957 |
0.4315 | 24.0 | 156 | 0.8184 | 0.7391 |
0.4272 | 24.92 | 162 | 0.8196 | 0.6957 |
0.4272 | 26.0 | 169 | 0.8712 | 0.6957 |
0.4261 | 26.92 | 175 | 0.7834 | 0.6957 |
0.4217 | 28.0 | 182 | 0.8394 | 0.6739 |
0.4217 | 28.92 | 188 | 0.9941 | 0.6739 |
0.3502 | 30.0 | 195 | 0.8909 | 0.7174 |
0.368 | 30.92 | 201 | 0.9995 | 0.7174 |
0.368 | 32.0 | 208 | 0.9418 | 0.6739 |
0.3473 | 32.92 | 214 | 0.8595 | 0.6739 |
0.3079 | 34.0 | 221 | 0.9562 | 0.6957 |
0.3079 | 34.92 | 227 | 0.8992 | 0.6739 |
0.3226 | 36.0 | 234 | 0.9908 | 0.6739 |
0.2603 | 36.92 | 240 | 0.9469 | 0.6957 |
0.2603 | 38.0 | 247 | 0.9942 | 0.6739 |
0.3028 | 38.92 | 253 | 1.0084 | 0.6739 |
0.2576 | 40.0 | 260 | 0.9908 | 0.6957 |
0.2576 | 40.92 | 266 | 1.0661 | 0.6957 |
0.2713 | 42.0 | 273 | 1.1347 | 0.6522 |
0.2713 | 42.92 | 279 | 1.1054 | 0.6739 |
0.2578 | 44.0 | 286 | 1.1089 | 0.6957 |
0.2367 | 44.92 | 292 | 1.1452 | 0.6739 |
0.2367 | 46.0 | 299 | 1.0272 | 0.6957 |
0.2301 | 46.92 | 305 | 1.1043 | 0.6739 |
0.2191 | 48.0 | 312 | 1.0815 | 0.6739 |
0.2191 | 48.92 | 318 | 0.9934 | 0.6957 |
0.2635 | 50.0 | 325 | 1.0866 | 0.6957 |
0.1874 | 50.92 | 331 | 1.0507 | 0.7174 |
0.1874 | 52.0 | 338 | 1.1002 | 0.7174 |
0.2057 | 52.92 | 344 | 1.0400 | 0.6739 |
0.1808 | 54.0 | 351 | 1.1092 | 0.7174 |
0.1808 | 54.92 | 357 | 1.1550 | 0.7174 |
0.2107 | 56.0 | 364 | 1.0579 | 0.6957 |
0.2149 | 56.92 | 370 | 1.0936 | 0.6957 |
0.2149 | 58.0 | 377 | 1.1692 | 0.6957 |
0.1865 | 58.92 | 383 | 1.1357 | 0.7174 |
0.1832 | 60.0 | 390 | 1.1549 | 0.6739 |
0.1832 | 60.92 | 396 | 1.1631 | 0.6957 |
0.1732 | 62.0 | 403 | 1.1312 | 0.6957 |
0.1732 | 62.92 | 409 | 1.1210 | 0.6957 |
0.1856 | 64.0 | 416 | 1.1835 | 0.6739 |
0.1503 | 64.92 | 422 | 1.1892 | 0.7174 |
0.1503 | 66.0 | 429 | 1.1865 | 0.6739 |
0.1713 | 66.92 | 435 | 1.1608 | 0.6739 |
0.1804 | 68.0 | 442 | 1.1699 | 0.6739 |
0.1804 | 68.92 | 448 | 1.1694 | 0.7174 |
0.1761 | 70.0 | 455 | 1.1744 | 0.6957 |
0.1619 | 70.92 | 461 | 1.1783 | 0.6957 |
0.1619 | 72.0 | 468 | 1.1797 | 0.6957 |
0.1649 | 72.92 | 474 | 1.1788 | 0.6957 |
0.1843 | 73.85 | 480 | 1.1780 | 0.6957 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0