Augusto777's picture
End of training
015e9c0 verified
|
raw
history blame
4.31 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-ve-U13b-80RX
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8695652173913043

vit-base-patch16-224-ve-U13b-80RX

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6456
  • Accuracy: 0.8696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3805 0.97 25 1.3567 0.5
1.1576 1.98 51 1.1360 0.4348
0.9331 2.99 77 0.8531 0.8043
0.6657 4.0 103 0.6856 0.7826
0.5642 4.97 128 0.6162 0.7826
0.3632 5.98 154 0.5902 0.8043
0.3384 6.99 180 0.4995 0.8043
0.2261 8.0 206 0.6854 0.7609
0.2066 8.97 231 0.5605 0.7826
0.1635 9.98 257 0.7209 0.7391
0.1829 10.99 283 0.9293 0.6957
0.1455 12.0 309 0.5999 0.7826
0.1072 12.97 334 0.7919 0.7826
0.1059 13.98 360 0.7782 0.8043
0.0971 14.99 386 0.8249 0.8043
0.0456 16.0 412 0.7965 0.7826
0.0483 16.97 437 0.7163 0.8261
0.0832 17.98 463 0.8122 0.7826
0.055 18.99 489 0.8250 0.7826
0.0753 20.0 515 0.6866 0.8478
0.14 20.97 540 0.6456 0.8696
0.0506 21.98 566 0.9127 0.7826
0.0963 22.99 592 0.6365 0.8261
0.0612 24.0 618 0.8252 0.8043
0.0875 24.97 643 0.8844 0.7391
0.1041 25.98 669 0.6594 0.8261
0.0512 26.99 695 0.9883 0.7826
0.0675 28.0 721 0.9216 0.8043
0.0492 28.97 746 0.9284 0.8043
0.0679 29.98 772 0.9341 0.7826
0.0996 30.99 798 0.9608 0.8043
0.0729 32.0 824 1.0155 0.7826
0.0296 32.97 849 1.0314 0.7826
0.0414 33.98 875 0.8358 0.8043
0.04 34.99 901 0.8912 0.8043
0.0179 36.0 927 0.8544 0.8043
0.0665 36.97 952 0.9154 0.8043
0.0413 37.98 978 0.8834 0.8043
0.04 38.83 1000 0.8808 0.8043

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0