metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-ve-U13b-80RX
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8695652173913043
vit-base-patch16-224-ve-U13b-80RX
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6456
- Accuracy: 0.8696
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3805 | 0.97 | 25 | 1.3567 | 0.5 |
1.1576 | 1.98 | 51 | 1.1360 | 0.4348 |
0.9331 | 2.99 | 77 | 0.8531 | 0.8043 |
0.6657 | 4.0 | 103 | 0.6856 | 0.7826 |
0.5642 | 4.97 | 128 | 0.6162 | 0.7826 |
0.3632 | 5.98 | 154 | 0.5902 | 0.8043 |
0.3384 | 6.99 | 180 | 0.4995 | 0.8043 |
0.2261 | 8.0 | 206 | 0.6854 | 0.7609 |
0.2066 | 8.97 | 231 | 0.5605 | 0.7826 |
0.1635 | 9.98 | 257 | 0.7209 | 0.7391 |
0.1829 | 10.99 | 283 | 0.9293 | 0.6957 |
0.1455 | 12.0 | 309 | 0.5999 | 0.7826 |
0.1072 | 12.97 | 334 | 0.7919 | 0.7826 |
0.1059 | 13.98 | 360 | 0.7782 | 0.8043 |
0.0971 | 14.99 | 386 | 0.8249 | 0.8043 |
0.0456 | 16.0 | 412 | 0.7965 | 0.7826 |
0.0483 | 16.97 | 437 | 0.7163 | 0.8261 |
0.0832 | 17.98 | 463 | 0.8122 | 0.7826 |
0.055 | 18.99 | 489 | 0.8250 | 0.7826 |
0.0753 | 20.0 | 515 | 0.6866 | 0.8478 |
0.14 | 20.97 | 540 | 0.6456 | 0.8696 |
0.0506 | 21.98 | 566 | 0.9127 | 0.7826 |
0.0963 | 22.99 | 592 | 0.6365 | 0.8261 |
0.0612 | 24.0 | 618 | 0.8252 | 0.8043 |
0.0875 | 24.97 | 643 | 0.8844 | 0.7391 |
0.1041 | 25.98 | 669 | 0.6594 | 0.8261 |
0.0512 | 26.99 | 695 | 0.9883 | 0.7826 |
0.0675 | 28.0 | 721 | 0.9216 | 0.8043 |
0.0492 | 28.97 | 746 | 0.9284 | 0.8043 |
0.0679 | 29.98 | 772 | 0.9341 | 0.7826 |
0.0996 | 30.99 | 798 | 0.9608 | 0.8043 |
0.0729 | 32.0 | 824 | 1.0155 | 0.7826 |
0.0296 | 32.97 | 849 | 1.0314 | 0.7826 |
0.0414 | 33.98 | 875 | 0.8358 | 0.8043 |
0.04 | 34.99 | 901 | 0.8912 | 0.8043 |
0.0179 | 36.0 | 927 | 0.8544 | 0.8043 |
0.0665 | 36.97 | 952 | 0.9154 | 0.8043 |
0.0413 | 37.98 | 978 | 0.8834 | 0.8043 |
0.04 | 38.83 | 1000 | 0.8808 | 0.8043 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0