Augusto777's picture
Update README.md
0c10c02 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-ve-U13b-R
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9347826086956522

vit-base-patch16-224-ve-U13b-R

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3534
  • Accuracy: 0.9348

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3157 0.99 51 1.2967 0.3478
0.9801 2.0 103 0.9966 0.5870
0.7385 2.99 154 0.7600 0.7174
0.572 4.0 206 0.6425 0.7826
0.3646 4.99 257 0.7687 0.6957
0.3033 6.0 309 0.6336 0.7391
0.3073 6.99 360 0.3534 0.9348
0.1623 8.0 412 0.8559 0.6739
0.1079 8.99 463 0.9730 0.7391
0.2703 10.0 515 0.7768 0.8043
0.178 10.99 566 0.8520 0.7826
0.2191 12.0 618 1.0049 0.7391
0.0597 12.99 669 0.8334 0.7609
0.0881 14.0 721 0.9985 0.7609
0.1265 14.99 772 0.9443 0.8043
0.0696 16.0 824 0.9878 0.8261
0.1198 16.99 875 0.8784 0.8043
0.1484 18.0 927 0.9595 0.7609
0.2887 18.99 978 1.0563 0.8043
0.1423 20.0 1030 0.8550 0.8043
0.083 20.99 1081 0.9093 0.7826
0.0695 22.0 1133 1.2758 0.6739
0.0285 22.99 1184 1.0852 0.7609
0.0132 24.0 1236 1.3341 0.6957
0.0957 24.99 1287 1.1965 0.7391
0.0633 26.0 1339 1.1199 0.7609
0.0705 26.99 1390 1.0551 0.8043
0.0564 28.0 1442 1.4332 0.7391
0.0798 28.99 1493 1.3855 0.7391
0.0326 30.0 1545 1.0534 0.8043
0.092 30.99 1596 1.1745 0.7609
0.1243 32.0 1648 1.1341 0.8043
0.062 32.99 1699 1.2648 0.7826
0.0941 34.0 1751 1.1236 0.7826
0.0119 34.99 1802 1.1303 0.8043
0.044 36.0 1854 1.1848 0.7826
0.0073 36.99 1905 1.1796 0.7609
0.0149 38.0 1957 1.2491 0.7826
0.0194 38.99 2008 1.1812 0.7826
0.0577 39.61 2040 1.1777 0.7609

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0