Visualize in Weights & Biases

bert-finetuned-Arxiv

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2203
  • F1: 0.8872
  • Roc Auc: 0.9052
  • Accuracy: 0.3438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.297 1.0 1563 0.2869 0.8483 0.8739 0.1142
0.2389 2.0 3126 0.2440 0.8719 0.8933 0.1934
0.2057 3.0 4689 0.2299 0.8791 0.8983 0.2795
0.1747 4.0 6252 0.2223 0.8837 0.9021 0.3185
0.1568 5.0 7815 0.2208 0.8867 0.9051 0.3281
0.1419 6.0 9378 0.2203 0.8872 0.9052 0.3438

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
109
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for AyoubChLin/bert-finetuned-Arxiv

Finetuned
(2761)
this model