|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9415247964470762 |
|
- name: Recall |
|
type: recall |
|
value: 0.9520958083832335 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9467807964272422 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9575551782682513 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2246 |
|
- Precision: 0.9415 |
|
- Recall: 0.9521 |
|
- F1: 0.9468 |
|
- Accuracy: 0.9576 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 1.0265 | 0.7630 | 0.8099 | 0.7858 | 0.8086 | |
|
| 1.4021 | 3.12 | 500 | 0.5804 | 0.8290 | 0.8638 | 0.8460 | 0.8718 | |
|
| 1.4021 | 4.69 | 750 | 0.3937 | 0.8882 | 0.9034 | 0.8957 | 0.9126 | |
|
| 0.4062 | 6.25 | 1000 | 0.3171 | 0.9137 | 0.9274 | 0.9205 | 0.9351 | |
|
| 0.4062 | 7.81 | 1250 | 0.2798 | 0.9332 | 0.9409 | 0.9370 | 0.9444 | |
|
| 0.2212 | 9.38 | 1500 | 0.2558 | 0.9277 | 0.9416 | 0.9346 | 0.9461 | |
|
| 0.2212 | 10.94 | 1750 | 0.2479 | 0.9335 | 0.9454 | 0.9394 | 0.9516 | |
|
| 0.1525 | 12.5 | 2000 | 0.2356 | 0.9444 | 0.9536 | 0.9490 | 0.9588 | |
|
| 0.1525 | 14.06 | 2250 | 0.2286 | 0.9365 | 0.9491 | 0.9428 | 0.9563 | |
|
| 0.1134 | 15.62 | 2500 | 0.2246 | 0.9415 | 0.9521 | 0.9468 | 0.9576 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|