leaderboard-pr-bot's picture
Adding Evaluation Results
e6e95fb verified
|
raw
history blame
4.87 kB
metadata
language:
  - zh
  - en
license: apache-2.0
datasets:
  - Azure99/blossom-chat-v3
  - Azure99/blossom-math-v4
  - Azure99/blossom-wizard-v3
  - Azure99/blossom-orca-v3
model-index:
  - name: blossom-v5-llama3-8b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 43.43
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 18.31
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 4
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.01
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.31
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 13.4
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Azure99/blossom-v5-llama3-8b
          name: Open LLM Leaderboard

BLOSSOM-v5-llama3-8b

💻Github🚀Blossom Chat Demo

What's new?

The Blossom V5 series models is fully trained using high-quality data distilled from gpt-4-0125-preview, resulting in significant improvements.

Introduction

Blossom is a conversational large language model, fine-tuned on the Blossom Orca/Wizard/Chat/Math mixed dataset based on the Meta-Llama-3-8B pre-trained model. Blossom possesses robust general capabilities and context comprehension. Additionally, the high-quality Chinese and English datasets used for training have been made open source.

Training was conducted in two stages. The first stage used 40K Wizard, 40K Orca, 10K Math single-turn instruction datasets, training for 1 epoch; the second stage used 10K Blossom chat multi-turn dialogue dataset, and 10% randomly sampled data from the first stage, training for 3 epochs.

Inference

Inference is performed in the form of dialogue continuation.

Single-turn dialogue

A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|: 

Multi-turn dialogue

A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|: Hello! How can I assist you today?<|end_of_text|>
|Human|: Generate a random number using python
|Bot|: 

Note: At the end of the Bot's output in the historical conversation, append a <|end_of_text|>.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 14.41
IFEval (0-Shot) 43.43
BBH (3-Shot) 18.31
MATH Lvl 5 (4-Shot) 4.00
GPQA (0-shot) 2.01
MuSR (0-shot) 5.31
MMLU-PRO (5-shot) 13.40