inference: false
license: apache-2.0
Model Card
๐ Technical report | ๐ Code | ๐ฐ Demo
This is Bunny-Llama-3-8B-V.
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2 and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.
We provide Bunny-Llama-3-8B-V, which is built upon SigLIP and Llama-3-8B.
The model is pretrained on LAION-2M and finetuned on Bunny-695K. More details about this model can be found in GitHub.
MME$^{\text{P}}$ | MME$^{\text{C}}$ | MMB$^{\text{T/D}}$ | SEED | MMMU$^{\text{V/T}}$ | VQA$^{\text{v2}}$ | GQA | SQA$^{\text{I}}$ | POPE | |
---|---|---|---|---|---|---|---|---|---|
Bunny-Llama-3-8B-V | 1571.8 | 297.1 | 74.3/74.0 | 65.1 | 39.1/35.4 | 81.94 | 63.7 | 74.3 | 86.7 |
Quickstart
Here we show a code snippet to show you how to use the model with transformers.
Before running the snippet, you need to install the following dependencies:
pip install torch transformers accelerate pillow
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
torch.set_default_device('cpu') # or 'cuda'
# create model
model = AutoModelForCausalLM.from_pretrained(
'BAAI/Bunny-Llama-3-8B-V',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'BAAI/Bunny-Llama-3-8B-V',
trust_remote_code=True)
# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
# image, sample images can be found in images folder
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())