BAAI
/

Emu2 / modeling_emu.py
QuanSun's picture
upload pytorch_model-000{11..15}-of-00015.bin
6f98381
from functools import partial
from typing import Any, List, Optional, Mapping, Callable
from collections import OrderedDict
from argparse import Namespace
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms as T
import PIL
import transformers
from transformers import PreTrainedModel, PreTrainedTokenizer
from .configuration_emu import EmuConfig
from .constants import *
from .modeling_llama import LlamaForCausalLM
from .visual import EVAVisionTransformer
class EmuPreTrainedModel(PreTrainedModel):
config_class = EmuConfig
base_model_prefix = "model"
supports_gradient_checkpointing = False
_no_split_modules = ["LlamaDecoderLayer", "Block"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class EmuForClsAndRegression(EmuPreTrainedModel):
def __init__(self, config):
super(EmuForClsAndRegression, self).__init__(config)
self.lm = LlamaForCausalLM(config=config)
self.lm.model.embed_tokens.padding_idx = config.pad_token_id
def get_num_layers(self):
return len(self.lm.model.layers)
class EmuModel(EmuPreTrainedModel):
def __init__(self, config):
super().__init__(config)
vision_config = Namespace(**config.vision_config)
self.visual = EVAVisionTransformer(
img_size=vision_config.image_size,
patch_size=vision_config.patch_size,
embed_dim=vision_config.width,
depth=vision_config.layers,
num_heads=vision_config.width // vision_config.head_width,
mlp_ratio=vision_config.mlp_ratio,
qkv_bias=vision_config.qkv_bias,
drop_path_rate=vision_config.drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=vision_config.layer_norm_eps),
xattn=vision_config.xattn,
postnorm=vision_config.postnorm,
)
self.decoder = EmuForClsAndRegression(config)
self.gradient_checkpointing = False
self.n_query = vision_config.n_query
self.v_query = vision_config.v_query
@property
def device(self):
return next(iter(self.parameters())).device
@property
def dtype(self):
return next(iter(self.parameters())).dtype
@torch.no_grad()
def encode_image(self, image: torch.Tensor, *, n_query=None):
n_query = n_query if n_query is not None else self.n_query
image_embeds = self.visual(image)
image_embeds = image_embeds[:, 1:, :]
b, n, c = image_embeds.shape
sqrt_n = int(n**0.5)
image_embeds = image_embeds.permute(0, 2, 1).view(b, c, sqrt_n, sqrt_n)
stride = int(sqrt_n // (n_query ** 0.5))
image_embeds = F.avg_pool2d(image_embeds, kernel_size=(stride, stride), stride=stride)
image_embeds = image_embeds.view(b, c, -1).permute(0, 2, 1).contiguous()
return image_embeds
class EmuForCausalLM(EmuPreTrainedModel):
_auto_class = "AutoModelForCausalLM"
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = EmuModel(config)
# LM to EVA
self.project_down = nn.Linear(config.hidden_size, config.d_model, bias=False)
# EVA to LM
self.project_up = nn.Linear(config.d_model, config.hidden_size, bias=False)
self.n_query = self.model.n_query
self.v_query = self.model.v_query
self.image_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_IMAGE_TOKEN * self.n_query + DEFAULT_IMG_END_TOKEN
# temporarily borrow [gIMG] as the video frame feature placeholder.
self.video_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_gIMG_TOKEN * self.v_query + DEFAULT_IMG_END_TOKEN
@property
def device(self):
return next(iter(self.parameters())).device
@property
def dtype(self):
return next(iter(self.parameters())).dtype
@torch.no_grad()
def generate(
self,
input_ids,
attention_mask,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
num_beams=5,
max_new_tokens=10,
min_len=1,
do_sample=False,
penalty_alpha=None,
top_p=None,
top_k=None,
temperature=None,
length_penalty=-1,
repetition_penalty=1.0,
**kwargs
):
text_embeds = self.model.decoder.lm.model.embed_tokens(input_ids).to("cuda")
if image is not None:
prompt_image_embeds = self.model.encode_image(image, n_query=self.n_query)
_, _, c = prompt_image_embeds.shape
prompt_image_embeds = prompt_image_embeds.view(-1, c)
prompt_image_embeds = self.project_up(prompt_image_embeds)
image_idx = (input_ids == IMAGE)
text_embeds[image_idx] = prompt_image_embeds.to(text_embeds.device)
if video is not None:
prompt_video_embeds = self.model.encode_image(video, n_query=self.v_query)
_, _, c = prompt_video_embeds.shape
prompt_video_embeds = prompt_video_embeds.view(-1, c)
prompt_video_embeds = self.project_up(prompt_video_embeds)
video_idx = (input_ids == VIDEO)
text_embeds[video_idx] = prompt_video_embeds.to(text_embeds.device)
outputs = self.model.decoder.lm.generate(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
do_sample=do_sample,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_length=min_len,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
penalty_alpha=penalty_alpha,
top_k=top_k,
top_p=top_p,
temperature=temperature,
**kwargs,
)
return outputs
def prepare_image_input(self, images):
image_size: int = self.config.vision_config['image_size']
transform = T.Compose(
[
T.Resize(
(image_size, image_size), interpolation=T.InterpolationMode.BICUBIC
),
T.ToTensor(),
T.Normalize(OPENAI_DATASET_MEAN, OPENAI_DATASET_STD),
]
)
images = [transform(image) for image in images]
return torch.stack(images, 0)
def _prepare_chat_template(self, text, system_msg=""):
text = [
system_msg + USER_TOKEN + ": " + t + ASSISTANT_TOKEN +":"
for t in text
]
return text
def prepare_text_input(
self,
text: List[str],
tokenizer: PreTrainedTokenizer,
image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
):
text = [
t.replace(image_placeholder, self.image_placeholder).replace(video_placeholder, self.video_placeholder)
for t in text
]
input_ids = tokenizer(text, padding="longest", return_tensors="pt")
return input_ids
def build_input_ids(
self,
text: List[str],
tokenizer: PreTrainedTokenizer,
image: Optional[List["PIL.Image"]] = None,
video: Optional[List["PIL.Image"]] = None,
system_msg: str = "",
to_cuda: bool = True
):
if self.config.model_version == "chat":
text = self._prepare_chat_template(text, system_msg)
if image is not None:
image = self.prepare_image_input(image)
if video is not None:
video = self.prepare_image_input(video)
inputs = self.prepare_text_input(text, tokenizer)
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
if to_cuda:
input_ids = input_ids.to("cuda")
attention_mask = attention_mask.to("cuda")
if image is not None:
image = image.to("cuda")
if video is not None:
video = video.to("cuda")
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'image': image,
'video': video
}