File size: 14,186 Bytes
f676ac1 dfbca9e f676ac1 dfbca9e f676ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
---
license: apache-2.0
datasets:
- BAAI/Infinity-Instruct
language:
- en
---
# Infinity Instruct
<p align="center">
<img src="fig/Bk3NbjnJko51MTx1ZCScT2sqnGg.png" width="300">
</p>
<p align="center">
<em>Beijing Academy of Artificial Intelligence (BAAI)</em><br/>
<em>[Paper][Code][🤗] (would be released soon)</em>
</p>
Infinity-Instruct-3M-0613-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-3M and Infinity-Instruct-0613](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and it beats SOTA language models such as Mixtral 8x7B v0.1, Gemini Pro and GPT3.5 on AlpacaEval 2.0!
## **Training Details**
<p align="center">
<img src="fig/trainingflow.png">
</p>
Infinity-Instruct-3M-0613-Mistral-7B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-3M to improve the foundational ability (math & code) of Mistral-7B-v0.1, and get the foundational instruct model Infinity-Instruct-3M-Mistral-7B. Then we finetune the Infinity-Instruct-3M-Mistral-7B to get the stronger chat model Infinity-Instruct-3M-0613-Mistral-7B. Here is the training hyperparamers.
```bash
epoch: 3
lr: 5e-6
min_lr: 0
lr_warmup_steps: 40
lr_decay_style: cosine
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
global_batch_size: 528
clip_grad: 1.0
```
Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatenate multiple training samples to remove padding token and apply diverse acceleration techniques to the traning procudure. It effectively reduces our training costs. We will release our code in the near future!
## **Benchmark**
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-baqh{text-align:center;vertical-align:top}
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-0lax{text-align:left;vertical-align:top}
</style>
<table class="tg"><thead>
<tr>
<th class="tg-amwm">Model</th>
<th class="tg-amwm">MT-Bench</th>
<th class="tg-amwm">AlpacaEval2.0</th>
</tr></thead>
<tbody>
<tr>
<td class="tg-0lax">OpenHermes-2.5-Mistral-7B*</td>
<td class="tg-baqh">7.5</td>
<td class="tg-baqh">16.2</td>
</tr>
<tr>
<td class="tg-0lax">Mistral-7B-Instruct-v0.2</td>
<td class="tg-baqh">7.6</td>
<td class="tg-baqh">17.1</td>
</tr>
<tr>
<td class="tg-0lax">Llama-3-8B-Instruct</td>
<td class="tg-baqh">8.1</td>
<td class="tg-baqh">22.9</td>
</tr>
<tr>
<td class="tg-0lax">GPT 3.5 Turbo 0613</td>
<td class="tg-baqh">8.4</td>
<td class="tg-baqh">22.7</td>
</tr>
<tr>
<td class="tg-0lax">Mixtral 8x7B v0.1</td>
<td class="tg-baqh">8.3</td>
<td class="tg-baqh">23.7</td>
</tr>
<tr>
<td class="tg-0lax">Gemini Pro</td>
<td class="tg-baqh">--</td>
<td class="tg-baqh">24.4</td>
</tr>
<tr>
<td class="tg-0lax">InfInstruct-3M-Mistral-7B*</td>
<td class="tg-baqh">7.6</td>
<td class="tg-baqh">16.2</td>
</tr>
<tr>
<td class="tg-0lax">InfInstruct-3M-0613-Mistral-7B*</td>
<td class="tg-baqh">8.1</td>
<td class="tg-amwm">25.5</td>
</tr>
</tbody></table>
*denote the model is finetuned without reinforcement learning from human feedback (RLHF).
We evaluate Infinity-Instruct-3M-0613-Mistral-7B on the two most popular instructions following benchmarks. Mt-Bench is a set of challenging multi-turn questions including code, math and routine dialogue. AlpacaEval2.0 is based on AlpacaFarm evaluation set. Both of these two benchmarks use GPT-4 to judge the model answer. AlpacaEval2.0 displays a high agreement rate with human-annotated benchmark, Chatbot Arena. The result shows that InfInstruct-3M-0613-Mistral-7B achieved 25.5 in AlpacaEval2.0, which is higher than the 22.5 of GPT3.5 Turbo although it does not yet use RLHF. InfInstruct-3M-0613-Mistral-7B also achieves 8.1 in MT-Bench, which is comparable to the state-of-the-art billion-parameter LLM such as Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2.
## Performance on **Downstream tasks**
We also evaluate Infinity-Instruct-3M-0613-Mistral-7B on diverse objective downstream tasks with [Opencompass](https://opencompass.org.cn):
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-baqh{text-align:center;vertical-align:top}
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-nrix{text-align:center;vertical-align:middle}
</style>
<table class="tg"><thead>
<tr>
<th class="tg-amwm" colspan="2">Benchmark</th>
<th class="tg-amwm">Infinity-Instruct-3M-Mistral-7B</th>
<th class="tg-amwm">Infinity-Instruct-3M-0613-Mistral-7B</th>
<th class="tg-amwm">Mistral-7B-v0.1</th>
<th class="tg-amwm">mistral-7B instruction v0.2</th>
<th class="tg-amwm">teknium/OpenHermes-2.5-Mistral-7B</th>
</tr></thead>
<tbody>
<tr>
<td class="tg-nrix" rowspan="7">GPT4ALL</td>
<td class="tg-baqh">ARC-c</td>
<td class="tg-amwm">82.37</td>
<td class="tg-baqh">83.30</td>
<td class="tg-baqh">69.15</td>
<td class="tg-baqh">73.22</td>
<td class="tg-baqh">78.31</td>
</tr>
<tr>
<td class="tg-baqh">ARC-e</td>
<td class="tg-amwm">92.42</td>
<td class="tg-baqh">90.65</td>
<td class="tg-baqh">79.54</td>
<td class="tg-baqh">82.01</td>
<td class="tg-baqh">88.54</td>
</tr>
<tr>
<td class="tg-baqh">Hellaswag</td>
<td class="tg-amwm">84.82</td>
<td class="tg-baqh">76.88</td>
<td class="tg-baqh">35.50</td>
<td class="tg-baqh">64.40</td>
<td class="tg-baqh">80.53</td>
</tr>
<tr>
<td class="tg-baqh">Winogrande</td>
<td class="tg-baqh">61.75</td>
<td class="tg-baqh">52.63</td>
<td class="tg-baqh">54.04</td>
<td class="tg-baqh">57.89</td>
<td class="tg-amwm">62.11</td>
</tr>
<tr>
<td class="tg-baqh">BoolQ</td>
<td class="tg-amwm">87.85</td>
<td class="tg-baqh">86.45</td>
<td class="tg-baqh">50.09</td>
<td class="tg-baqh">55.75</td>
<td class="tg-baqh">87.34</td>
</tr>
<tr>
<td class="tg-baqh">PIQA</td>
<td class="tg-amwm">87.11</td>
<td class="tg-baqh">86.13</td>
<td class="tg-baqh">60.39</td>
<td class="tg-baqh">72.36</td>
<td class="tg-baqh">80.14</td>
</tr>
<tr>
<td class="tg-baqh">OBQA</td>
<td class="tg-amwm">83.00</td>
<td class="tg-baqh">79.40</td>
<td class="tg-baqh">62.60</td>
<td class="tg-baqh">68.00</td>
<td class="tg-baqh">81.00</td>
</tr>
<tr>
<td class="tg-nrix" rowspan="4">Commonsense QA</td>
<td class="tg-baqh">MMLU</td>
<td class="tg-baqh">62.85</td>
<td class="tg-amwm">63.62</td>
<td class="tg-baqh">56.49</td>
<td class="tg-baqh">59.56</td>
<td class="tg-baqh">63.16</td>
</tr>
<tr>
<td class="tg-baqh">NQ</td>
<td class="tg-baqh">24.46</td>
<td class="tg-baqh">27.48</td>
<td class="tg-baqh">13.99</td>
<td class="tg-baqh">18.42</td>
<td class="tg-amwm">28.84</td>
</tr>
<tr>
<td class="tg-baqh">TriviaQA</td>
<td class="tg-baqh">60.85</td>
<td class="tg-amwm">64.06</td>
<td class="tg-baqh">63.99</td>
<td class="tg-baqh">59.21</td>
<td class="tg-baqh">63.72</td>
</tr>
<tr>
<td class="tg-baqh">GPQA</td>
<td class="tg-baqh">27.27</td>
<td class="tg-amwm">27.78</td>
<td class="tg-baqh">23.23</td>
<td class="tg-baqh">19.19</td>
<td class="tg-baqh">26.77</td>
</tr>
<tr>
<td class="tg-nrix" rowspan="4">MATH & Reasoning</td>
<td class="tg-baqh">GSM8K</td>
<td class="tg-baqh">78.09</td>
<td class="tg-amwm">79.83</td>
<td class="tg-baqh">48.07</td>
<td class="tg-baqh">45.94</td>
<td class="tg-baqh">73.62</td>
</tr>
<tr>
<td class="tg-baqh">Math</td>
<td class="tg-amwm">28.38</td>
<td class="tg-baqh">23.30</td>
<td class="tg-baqh">11.76</td>
<td class="tg-baqh">9.46</td>
<td class="tg-baqh">17.32</td>
</tr>
<tr>
<td class="tg-baqh">BBH</td>
<td class="tg-baqh">59.61</td>
<td class="tg-amwm">61.07</td>
<td class="tg-baqh">56.65</td>
<td class="tg-baqh">49.15</td>
<td class="tg-baqh">60.41</td>
</tr>
<tr>
<td class="tg-baqh">DROP</td>
<td class="tg-amwm">68.17</td>
<td class="tg-baqh">65.62</td>
<td class="tg-baqh">3.06</td>
<td class="tg-baqh">6.98</td>
<td class="tg-baqh">64.49</td>
</tr>
<tr>
<td class="tg-nrix" rowspan="2">Code</td>
<td class="tg-baqh">HumanEval</td>
<td class="tg-baqh">50.61</td>
<td class="tg-amwm">51.22</td>
<td class="tg-baqh">14.02</td>
<td class="tg-baqh">32.93</td>
<td class="tg-baqh">43.29</td>
</tr>
<tr>
<td class="tg-baqh">MBPP</td>
<td class="tg-amwm">46.00</td>
<td class="tg-baqh">44.80</td>
<td class="tg-baqh">38.00</td>
<td class="tg-baqh">3.80</td>
<td class="tg-baqh">41.80</td>
</tr>
<tr>
<td class="tg-nrix" rowspan="4">Chinese</td>
<td class="tg-baqh">AGI Eval</td>
<td class="tg-amwm">42.24</td>
<td class="tg-baqh">40.43</td>
<td class="tg-baqh">27.92</td>
<td class="tg-baqh">35.78</td>
<td class="tg-baqh">36.32</td>
</tr>
<tr>
<td class="tg-baqh">c-eval</td>
<td class="tg-baqh">48.62</td>
<td class="tg-amwm">49.00</td>
<td class="tg-baqh">46.83</td>
<td class="tg-baqh">42.58</td>
<td class="tg-baqh">44.30</td>
</tr>
<tr>
<td class="tg-baqh">cmmlu</td>
<td class="tg-baqh">46.67</td>
<td class="tg-amwm">48.07</td>
<td class="tg-baqh">34.59</td>
<td class="tg-baqh">42.05</td>
<td class="tg-baqh">43.05</td>
</tr>
<tr>
<td class="tg-baqh">gaokao</td>
<td class="tg-baqh">12.54</td>
<td class="tg-baqh">14.48</td>
<td class="tg-baqh">13.24</td>
<td class="tg-baqh">12.10</td>
<td class="tg-amwm">15.00</td>
</tr>
<tr>
<td class="tg-amwm" colspan="2">AVERAGE</td>
<td class="tg-amwm">58.84</td>
<td class="tg-baqh">57.91</td>
<td class="tg-baqh">41.10</td>
<td class="tg-baqh">43.37</td>
<td class="tg-baqh">56.19</td>
</tr>
</tbody></table>
## How to use**
Infinity-Instruct-3M-0613-Mistral-7B adopt the same chat template of [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):
```bash
<|im_start|>system
You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.<|im_end|>
<|im_start|>user
Hello!<|im_end|>
<|im_start|>assistant
Hi!<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
```
To apply this model and template in conversation scenarios, you can refer to the following code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList
import torch
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-0613-Mistral-7B",
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-0613-Mistral-7B")
# This template is copied from OpenHermers-mistral-2.5 (https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(1, eos_token_id=tokenizer.eos_token_id),
TemperatureLogitsWarper(0.7),
]
)
generated_ids = model.generate(
model_inputs.input_ids,
logits_processor=logits_processor,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## **Disclaimer**
The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of Infinity Instruct is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
##
## Citation
Our paper, detailing the development and features of the **Infinity Instruct** dataset and finetuned models, will be released soon on arXiv. Stay tuned!
```
@article{InfinityInstruct2024,
title={Infinity Instruct},
author={Beijing Academy of Artificial Intelligence (BAAI)},
journal={arXiv preprint arXiv:2406.XXXX},
year={2024}
}
``` |