Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,7 @@ language:
|
|
18 |
Infinity-Instruct-3M-0613-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-3M and Infinity-Instruct-0613](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to Mixtral 8x7B v0.1, Gemini Pro, and GPT-3.5.
|
19 |
|
20 |
## **Training Details**
|
|
|
21 |
<p align="center">
|
22 |
<img src="fig/trainingflow.png">
|
23 |
</p>
|
@@ -41,64 +42,16 @@ Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatena
|
|
41 |
|
42 |
## **Benchmark**
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
<table class="tg"><thead>
|
55 |
-
<tr>
|
56 |
-
<th class="tg-amwm">Model</th>
|
57 |
-
<th class="tg-amwm">MT-Bench</th>
|
58 |
-
<th class="tg-amwm">AlpacaEval2.0</th>
|
59 |
-
</tr></thead>
|
60 |
-
<tbody>
|
61 |
-
<tr>
|
62 |
-
<td class="tg-0lax">OpenHermes-2.5-Mistral-7B*</td>
|
63 |
-
<td class="tg-baqh">7.5</td>
|
64 |
-
<td class="tg-baqh">16.2</td>
|
65 |
-
</tr>
|
66 |
-
<tr>
|
67 |
-
<td class="tg-0lax">Mistral-7B-Instruct-v0.2</td>
|
68 |
-
<td class="tg-baqh">7.6</td>
|
69 |
-
<td class="tg-baqh">17.1</td>
|
70 |
-
</tr>
|
71 |
-
<tr>
|
72 |
-
<td class="tg-0lax">Llama-3-8B-Instruct</td>
|
73 |
-
<td class="tg-baqh">8.1</td>
|
74 |
-
<td class="tg-baqh">22.9</td>
|
75 |
-
</tr>
|
76 |
-
<tr>
|
77 |
-
<td class="tg-0lax">GPT 3.5 Turbo 0613</td>
|
78 |
-
<td class="tg-baqh">8.4</td>
|
79 |
-
<td class="tg-baqh">22.7</td>
|
80 |
-
</tr>
|
81 |
-
<tr>
|
82 |
-
<td class="tg-0lax">Mixtral 8x7B v0.1</td>
|
83 |
-
<td class="tg-baqh">8.3</td>
|
84 |
-
<td class="tg-baqh">23.7</td>
|
85 |
-
</tr>
|
86 |
-
<tr>
|
87 |
-
<td class="tg-0lax">Gemini Pro</td>
|
88 |
-
<td class="tg-baqh">--</td>
|
89 |
-
<td class="tg-baqh">24.4</td>
|
90 |
-
</tr>
|
91 |
-
<tr>
|
92 |
-
<td class="tg-0lax">InfInstruct-3M-Mistral-7B*</td>
|
93 |
-
<td class="tg-baqh">7.6</td>
|
94 |
-
<td class="tg-baqh">16.2</td>
|
95 |
-
</tr>
|
96 |
-
<tr>
|
97 |
-
<td class="tg-0lax">InfInstruct-3M-0613-Mistral-7B*</td>
|
98 |
-
<td class="tg-baqh">8.1</td>
|
99 |
-
<td class="tg-amwm">25.5</td>
|
100 |
-
</tr>
|
101 |
-
</tbody></table>
|
102 |
|
103 |
*denote the model is finetuned without reinforcement learning from human feedback (RLHF).
|
104 |
|
@@ -108,208 +61,9 @@ We evaluate Infinity-Instruct-3M-0613-Mistral-7B on the two most popular instruc
|
|
108 |
|
109 |
We also evaluate Infinity-Instruct-3M-0613-Mistral-7B on diverse objective downstream tasks with [Opencompass](https://opencompass.org.cn):
|
110 |
|
111 |
-
<
|
112 |
-
.
|
113 |
-
|
114 |
-
overflow:hidden;padding:10px 5px;word-break:normal;}
|
115 |
-
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
|
116 |
-
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
|
117 |
-
.tg .tg-baqh{text-align:center;vertical-align:top}
|
118 |
-
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
|
119 |
-
.tg .tg-nrix{text-align:center;vertical-align:middle}
|
120 |
-
</style>
|
121 |
-
<table class="tg"><thead>
|
122 |
-
<tr>
|
123 |
-
<th class="tg-amwm" colspan="2">Benchmark</th>
|
124 |
-
<th class="tg-amwm">Infinity-Instruct-3M-Mistral-7B</th>
|
125 |
-
<th class="tg-amwm">Infinity-Instruct-3M-0613-Mistral-7B</th>
|
126 |
-
<th class="tg-amwm">Mistral-7B-v0.1</th>
|
127 |
-
<th class="tg-amwm">mistral-7B instruction v0.2</th>
|
128 |
-
<th class="tg-amwm">teknium/OpenHermes-2.5-Mistral-7B</th>
|
129 |
-
</tr></thead>
|
130 |
-
<tbody>
|
131 |
-
<tr>
|
132 |
-
<td class="tg-nrix" rowspan="7">GPT4ALL</td>
|
133 |
-
<td class="tg-baqh">ARC-c</td>
|
134 |
-
<td class="tg-amwm">82.37</td>
|
135 |
-
<td class="tg-baqh">83.30</td>
|
136 |
-
<td class="tg-baqh">69.15</td>
|
137 |
-
<td class="tg-baqh">73.22</td>
|
138 |
-
<td class="tg-baqh">78.31</td>
|
139 |
-
</tr>
|
140 |
-
<tr>
|
141 |
-
<td class="tg-baqh">ARC-e</td>
|
142 |
-
<td class="tg-amwm">92.42</td>
|
143 |
-
<td class="tg-baqh">90.65</td>
|
144 |
-
<td class="tg-baqh">79.54</td>
|
145 |
-
<td class="tg-baqh">82.01</td>
|
146 |
-
<td class="tg-baqh">88.54</td>
|
147 |
-
</tr>
|
148 |
-
<tr>
|
149 |
-
<td class="tg-baqh">Hellaswag</td>
|
150 |
-
<td class="tg-amwm">84.82</td>
|
151 |
-
<td class="tg-baqh">76.88</td>
|
152 |
-
<td class="tg-baqh">35.50</td>
|
153 |
-
<td class="tg-baqh">64.40</td>
|
154 |
-
<td class="tg-baqh">80.53</td>
|
155 |
-
</tr>
|
156 |
-
<tr>
|
157 |
-
<td class="tg-baqh">Winogrande</td>
|
158 |
-
<td class="tg-baqh">61.75</td>
|
159 |
-
<td class="tg-baqh">52.63</td>
|
160 |
-
<td class="tg-baqh">54.04</td>
|
161 |
-
<td class="tg-baqh">57.89</td>
|
162 |
-
<td class="tg-amwm">62.11</td>
|
163 |
-
</tr>
|
164 |
-
<tr>
|
165 |
-
<td class="tg-baqh">BoolQ</td>
|
166 |
-
<td class="tg-amwm">87.85</td>
|
167 |
-
<td class="tg-baqh">86.45</td>
|
168 |
-
<td class="tg-baqh">50.09</td>
|
169 |
-
<td class="tg-baqh">55.75</td>
|
170 |
-
<td class="tg-baqh">87.34</td>
|
171 |
-
</tr>
|
172 |
-
<tr>
|
173 |
-
<td class="tg-baqh">PIQA</td>
|
174 |
-
<td class="tg-amwm">87.11</td>
|
175 |
-
<td class="tg-baqh">86.13</td>
|
176 |
-
<td class="tg-baqh">60.39</td>
|
177 |
-
<td class="tg-baqh">72.36</td>
|
178 |
-
<td class="tg-baqh">80.14</td>
|
179 |
-
</tr>
|
180 |
-
<tr>
|
181 |
-
<td class="tg-baqh">OBQA</td>
|
182 |
-
<td class="tg-amwm">83.00</td>
|
183 |
-
<td class="tg-baqh">79.40</td>
|
184 |
-
<td class="tg-baqh">62.60</td>
|
185 |
-
<td class="tg-baqh">68.00</td>
|
186 |
-
<td class="tg-baqh">81.00</td>
|
187 |
-
</tr>
|
188 |
-
<tr>
|
189 |
-
<td class="tg-nrix" rowspan="4">Commonsense QA</td>
|
190 |
-
<td class="tg-baqh">MMLU</td>
|
191 |
-
<td class="tg-baqh">62.85</td>
|
192 |
-
<td class="tg-amwm">63.62</td>
|
193 |
-
<td class="tg-baqh">56.49</td>
|
194 |
-
<td class="tg-baqh">59.56</td>
|
195 |
-
<td class="tg-baqh">63.16</td>
|
196 |
-
</tr>
|
197 |
-
<tr>
|
198 |
-
<td class="tg-baqh">NQ</td>
|
199 |
-
<td class="tg-baqh">24.46</td>
|
200 |
-
<td class="tg-baqh">27.48</td>
|
201 |
-
<td class="tg-baqh">13.99</td>
|
202 |
-
<td class="tg-baqh">18.42</td>
|
203 |
-
<td class="tg-amwm">28.84</td>
|
204 |
-
</tr>
|
205 |
-
<tr>
|
206 |
-
<td class="tg-baqh">TriviaQA</td>
|
207 |
-
<td class="tg-baqh">60.85</td>
|
208 |
-
<td class="tg-amwm">64.06</td>
|
209 |
-
<td class="tg-baqh">63.99</td>
|
210 |
-
<td class="tg-baqh">59.21</td>
|
211 |
-
<td class="tg-baqh">63.72</td>
|
212 |
-
</tr>
|
213 |
-
<tr>
|
214 |
-
<td class="tg-baqh">GPQA</td>
|
215 |
-
<td class="tg-baqh">27.27</td>
|
216 |
-
<td class="tg-amwm">27.78</td>
|
217 |
-
<td class="tg-baqh">23.23</td>
|
218 |
-
<td class="tg-baqh">19.19</td>
|
219 |
-
<td class="tg-baqh">26.77</td>
|
220 |
-
</tr>
|
221 |
-
<tr>
|
222 |
-
<td class="tg-nrix" rowspan="4">MATH & Reasoning</td>
|
223 |
-
<td class="tg-baqh">GSM8K</td>
|
224 |
-
<td class="tg-baqh">78.09</td>
|
225 |
-
<td class="tg-amwm">79.83</td>
|
226 |
-
<td class="tg-baqh">48.07</td>
|
227 |
-
<td class="tg-baqh">45.94</td>
|
228 |
-
<td class="tg-baqh">73.62</td>
|
229 |
-
</tr>
|
230 |
-
<tr>
|
231 |
-
<td class="tg-baqh">Math</td>
|
232 |
-
<td class="tg-amwm">28.38</td>
|
233 |
-
<td class="tg-baqh">23.30</td>
|
234 |
-
<td class="tg-baqh">11.76</td>
|
235 |
-
<td class="tg-baqh">9.46</td>
|
236 |
-
<td class="tg-baqh">17.32</td>
|
237 |
-
</tr>
|
238 |
-
<tr>
|
239 |
-
<td class="tg-baqh">BBH</td>
|
240 |
-
<td class="tg-baqh">59.61</td>
|
241 |
-
<td class="tg-amwm">61.07</td>
|
242 |
-
<td class="tg-baqh">56.65</td>
|
243 |
-
<td class="tg-baqh">49.15</td>
|
244 |
-
<td class="tg-baqh">60.41</td>
|
245 |
-
</tr>
|
246 |
-
<tr>
|
247 |
-
<td class="tg-baqh">DROP</td>
|
248 |
-
<td class="tg-amwm">68.17</td>
|
249 |
-
<td class="tg-baqh">65.62</td>
|
250 |
-
<td class="tg-baqh">3.06</td>
|
251 |
-
<td class="tg-baqh">6.98</td>
|
252 |
-
<td class="tg-baqh">64.49</td>
|
253 |
-
</tr>
|
254 |
-
<tr>
|
255 |
-
<td class="tg-nrix" rowspan="2">Code</td>
|
256 |
-
<td class="tg-baqh">HumanEval</td>
|
257 |
-
<td class="tg-baqh">50.61</td>
|
258 |
-
<td class="tg-amwm">51.22</td>
|
259 |
-
<td class="tg-baqh">14.02</td>
|
260 |
-
<td class="tg-baqh">32.93</td>
|
261 |
-
<td class="tg-baqh">43.29</td>
|
262 |
-
</tr>
|
263 |
-
<tr>
|
264 |
-
<td class="tg-baqh">MBPP</td>
|
265 |
-
<td class="tg-amwm">46.00</td>
|
266 |
-
<td class="tg-baqh">44.80</td>
|
267 |
-
<td class="tg-baqh">38.00</td>
|
268 |
-
<td class="tg-baqh">3.80</td>
|
269 |
-
<td class="tg-baqh">41.80</td>
|
270 |
-
</tr>
|
271 |
-
<tr>
|
272 |
-
<td class="tg-nrix" rowspan="4">Chinese</td>
|
273 |
-
<td class="tg-baqh">AGI Eval</td>
|
274 |
-
<td class="tg-amwm">42.24</td>
|
275 |
-
<td class="tg-baqh">40.43</td>
|
276 |
-
<td class="tg-baqh">27.92</td>
|
277 |
-
<td class="tg-baqh">35.78</td>
|
278 |
-
<td class="tg-baqh">36.32</td>
|
279 |
-
</tr>
|
280 |
-
<tr>
|
281 |
-
<td class="tg-baqh">c-eval</td>
|
282 |
-
<td class="tg-baqh">48.62</td>
|
283 |
-
<td class="tg-amwm">49.00</td>
|
284 |
-
<td class="tg-baqh">46.83</td>
|
285 |
-
<td class="tg-baqh">42.58</td>
|
286 |
-
<td class="tg-baqh">44.30</td>
|
287 |
-
</tr>
|
288 |
-
<tr>
|
289 |
-
<td class="tg-baqh">cmmlu</td>
|
290 |
-
<td class="tg-baqh">46.67</td>
|
291 |
-
<td class="tg-amwm">48.07</td>
|
292 |
-
<td class="tg-baqh">34.59</td>
|
293 |
-
<td class="tg-baqh">42.05</td>
|
294 |
-
<td class="tg-baqh">43.05</td>
|
295 |
-
</tr>
|
296 |
-
<tr>
|
297 |
-
<td class="tg-baqh">gaokao</td>
|
298 |
-
<td class="tg-baqh">12.54</td>
|
299 |
-
<td class="tg-baqh">14.48</td>
|
300 |
-
<td class="tg-baqh">13.24</td>
|
301 |
-
<td class="tg-baqh">12.10</td>
|
302 |
-
<td class="tg-amwm">15.00</td>
|
303 |
-
</tr>
|
304 |
-
<tr>
|
305 |
-
<td class="tg-amwm" colspan="2">AVERAGE</td>
|
306 |
-
<td class="tg-amwm">58.84</td>
|
307 |
-
<td class="tg-baqh">57.91</td>
|
308 |
-
<td class="tg-baqh">41.10</td>
|
309 |
-
<td class="tg-baqh">43.37</td>
|
310 |
-
<td class="tg-baqh">56.19</td>
|
311 |
-
</tr>
|
312 |
-
</tbody></table>
|
313 |
|
314 |
## **How to use**
|
315 |
|
|
|
18 |
Infinity-Instruct-3M-0613-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-3M and Infinity-Instruct-0613](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to Mixtral 8x7B v0.1, Gemini Pro, and GPT-3.5.
|
19 |
|
20 |
## **Training Details**
|
21 |
+
|
22 |
<p align="center">
|
23 |
<img src="fig/trainingflow.png">
|
24 |
</p>
|
|
|
42 |
|
43 |
## **Benchmark**
|
44 |
|
45 |
+
| **Model** | **MT-Bench** | **AlpacaEval2.0** |
|
46 |
+
|:-------------------------------:|:------------:|:-----------------:|
|
47 |
+
| OpenHermes-2.5-Mistral-7B* | 7.5 | 16.2 |
|
48 |
+
| Mistral-7B-Instruct-v0.2 | 7.6 | 17.1 |
|
49 |
+
| Llama-3-8B-Instruct | 8.1 | 22.9 |
|
50 |
+
| GPT 3.5 Turbo 0613 | 8.4 | 22.7 |
|
51 |
+
| Mixtral 8x7B v0.1 | 8.3 | 23.7 |
|
52 |
+
| Gemini Pro | -- | 24.4 |
|
53 |
+
| InfInstruct-3M-Mistral-7B* | 7.6 | 16.2 |
|
54 |
+
| InfInstruct-3M-0613-Mistral-7B* | 8.1 | **25.5** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
*denote the model is finetuned without reinforcement learning from human feedback (RLHF).
|
57 |
|
|
|
61 |
|
62 |
We also evaluate Infinity-Instruct-3M-0613-Mistral-7B on diverse objective downstream tasks with [Opencompass](https://opencompass.org.cn):
|
63 |
|
64 |
+
<p align="center">
|
65 |
+
<img src="fig/result.png">
|
66 |
+
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
## **How to use**
|
69 |
|