add quickstart
#3
by
yuxindu
- opened
- README.md +192 -0
- config.json +23 -0
- merges.txt +0 -0
- model_segvol_single.py +1951 -0
- SegVol_v1.pth → pytorch_model.bin +2 -2
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6565b54a9bf6665f10f75441/no60wyvKDTD-WV3pCt2P5.jpeg)
|
3 |
+
|
4 |
+
Language: [EN / ZH]
|
5 |
+
|
6 |
+
The SegVol is a universal and interactive model for volumetric medical image segmentation. SegVol accepts point, box, and text prompts while output volumetric segmentation. By training on 90k unlabeled Computed Tomography (CT) volumes and 6k labeled CTs, this foundation model supports the segmentation of over 200 anatomical categories.
|
7 |
+
|
8 |
+
SegVol是用于体积医学图像分割的通用交互式模型,可以使用点,框和文本作为prompt驱动模型,输出分割结果。
|
9 |
+
|
10 |
+
通过在90k个无标签CT和6k个有标签CT上进行训练,该基础模型支持对200多个解剖类别进行分割。
|
11 |
+
|
12 |
+
[**Paper**](https://arxiv.org/abs/2311.13385), [**Code**](https://github.com/BAAI-DCAI/SegVol) 和 [**Demo**](https://huggingface.co/spaces/BAAI/SegVol) 已发布。
|
13 |
+
|
14 |
+
**Keywords**: 3D medical SAM, volumetric image segmentation
|
15 |
+
|
16 |
+
## Quicktart
|
17 |
+
|
18 |
+
### Requirements
|
19 |
+
```bash
|
20 |
+
conda create -n segvol_transformers python=3.8
|
21 |
+
conda activate segvol_transformers
|
22 |
+
```
|
23 |
+
[pytorch v1.11.0](https://pytorch.org/get-started/previous-versions/) or higher version is required. Please also install the following support packages:
|
24 |
+
|
25 |
+
需要 [pytorch v1.11.0](https://pytorch.org/get-started/previous-versions/) 或更高版本。另外请安装如下支持包:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
pip install 'monai[all]==0.9.0'
|
29 |
+
pip install einops==0.6.1
|
30 |
+
pip install transformers==4.18.0
|
31 |
+
pip install matplotlib
|
32 |
+
```
|
33 |
+
|
34 |
+
### Test script
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModel, AutoTokenizer
|
38 |
+
import torch
|
39 |
+
import os
|
40 |
+
|
41 |
+
# get device
|
42 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
43 |
+
|
44 |
+
# load model
|
45 |
+
clip_tokenizer = AutoTokenizer.from_pretrained("BAAI/SegVol")
|
46 |
+
model = AutoModel.from_pretrained("BAAI/SegVol", trust_remote_code=True, test_mode=True)
|
47 |
+
model.model.text_encoder.tokenizer = clip_tokenizer
|
48 |
+
model.eval()
|
49 |
+
model.to(device)
|
50 |
+
print('model load done')
|
51 |
+
|
52 |
+
# set case path
|
53 |
+
ct_path = 'path/to/Case_image_00001_0000.nii.gz'
|
54 |
+
gt_path = 'path/to/Case_label_00001.nii.gz'
|
55 |
+
|
56 |
+
# set categories, corresponding to the unique values(1, 2, 3, 4, ...) in ground truth mask
|
57 |
+
categories = ["liver", "kidney", "spleen", "pancreas"]
|
58 |
+
|
59 |
+
# generate npy data format
|
60 |
+
ct_npy, gt_npy = model.processor.preprocess_ct_gt(ct_path, gt_path, category=categories)
|
61 |
+
# IF you have download our 25 processed datasets, you can skip to here with the processed ct_npy, gt_npy files
|
62 |
+
|
63 |
+
# go through zoom_transform to generate zoomout & zoomin views
|
64 |
+
data_item = model.processor.zoom_transform(ct_npy, gt_npy)
|
65 |
+
|
66 |
+
# add batch dim manually
|
67 |
+
data_item['image'], data_item['label'], data_item['zoom_out_image'], data_item['zoom_out_label'] = \
|
68 |
+
data_item['image'].unsqueeze(0).to(device), data_item['label'].unsqueeze(0).to(device), data_item['zoom_out_image'].unsqueeze(0).to(device), data_item['zoom_out_label'].unsqueeze(0).to(device)
|
69 |
+
|
70 |
+
# take liver as the example
|
71 |
+
cls_idx = 0
|
72 |
+
|
73 |
+
# text prompt
|
74 |
+
text_prompt = [categories[cls_idx]]
|
75 |
+
|
76 |
+
# point prompt
|
77 |
+
point_prompt, point_prompt_map = model.processor.point_prompt_b(data_item['zoom_out_label'][0][cls_idx], device=device) # inputs w/o batch dim, outputs w batch dim
|
78 |
+
|
79 |
+
# bbox prompt
|
80 |
+
bbox_prompt, bbox_prompt_map = model.processor.bbox_prompt_b(data_item['zoom_out_label'][0][cls_idx], device=device) # inputs w/o batch dim, outputs w batch dim
|
81 |
+
|
82 |
+
print('prompt done')
|
83 |
+
|
84 |
+
# segvol test forward
|
85 |
+
# use_zoom: use zoom-out-zoom-in
|
86 |
+
# point_prompt_group: use point prompt
|
87 |
+
# bbox_prompt_group: use bbox prompt
|
88 |
+
# text_prompt: use text prompt
|
89 |
+
logits_mask = model.forward_test(image=data_item['image'],
|
90 |
+
zoomed_image=data_item['zoom_out_image'],
|
91 |
+
# point_prompt_group=[point_prompt, point_prompt_map],
|
92 |
+
bbox_prompt_group=[bbox_prompt, bbox_prompt_map],
|
93 |
+
text_prompt=text_prompt,
|
94 |
+
use_zoom=True
|
95 |
+
)
|
96 |
+
|
97 |
+
# cal dice score
|
98 |
+
dice = model.processor.dice_score(logits_mask[0][0], data_item['label'][0][cls_idx], device)
|
99 |
+
print(dice)
|
100 |
+
|
101 |
+
# save prediction as nii.gz file
|
102 |
+
save_path='./Case_preds_00001.nii.gz'
|
103 |
+
model.processor.save_preds(ct_path, save_path, logits_mask[0][0],
|
104 |
+
start_coord=data_item['foreground_start_coord'],
|
105 |
+
end_coord=data_item['foreground_end_coord'])
|
106 |
+
print('done')
|
107 |
+
```
|
108 |
+
|
109 |
+
### Training script
|
110 |
+
|
111 |
+
```python
|
112 |
+
from transformers import AutoModel, AutoTokenizer
|
113 |
+
import torch
|
114 |
+
import os
|
115 |
+
|
116 |
+
# get device
|
117 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
118 |
+
|
119 |
+
# load model
|
120 |
+
clip_tokenizer = AutoTokenizer.from_pretrained("BAAI/SegVol")
|
121 |
+
model = AutoModel.from_pretrained("BAAI/SegVol", trust_remote_code=True, test_mode=False)
|
122 |
+
model.model.text_encoder.tokenizer = clip_tokenizer
|
123 |
+
model.train()
|
124 |
+
model.to(device)
|
125 |
+
print('model load done')
|
126 |
+
|
127 |
+
# set case path
|
128 |
+
ct_path = 'path/to/Case_image_00001_0000.nii.gz'
|
129 |
+
gt_path = 'path/to/Case_label_00001.nii.gz'
|
130 |
+
|
131 |
+
# set categories, corresponding to the unique values(1, 2, 3, 4, ...) in ground truth mask
|
132 |
+
categories = ["liver", "kidney", "spleen", "pancreas"]
|
133 |
+
|
134 |
+
# generate npy data format
|
135 |
+
ct_npy, gt_npy = model.processor.preprocess_ct_gt(ct_path, gt_path, category=categories)
|
136 |
+
# IF you have download our 25 processed datasets, you can skip to here with the processed ct_npy, gt_npy files
|
137 |
+
|
138 |
+
# go through train transform
|
139 |
+
data_item = model.processor.train_transform(ct_npy, gt_npy)
|
140 |
+
|
141 |
+
# training example
|
142 |
+
# add batch dim manually
|
143 |
+
image, gt3D = data_item["image"].unsqueeze(0).to(device), data_item["label"].unsqueeze(0).to(device) # add batch dim
|
144 |
+
|
145 |
+
loss_step_avg = 0
|
146 |
+
for cls_idx in range(len(categories)):
|
147 |
+
# optimizer.zero_grad()
|
148 |
+
organs_cls = categories[cls_idx]
|
149 |
+
labels_cls = gt3D[:, cls_idx]
|
150 |
+
loss = model.forward_train(image, train_organs=organs_cls, train_labels=labels_cls)
|
151 |
+
loss_step_avg += loss.item()
|
152 |
+
loss.backward()
|
153 |
+
# optimizer.step()
|
154 |
+
|
155 |
+
loss_step_avg /= len(categories)
|
156 |
+
print(f'AVG loss {loss_step_avg}')
|
157 |
+
|
158 |
+
# save ckpt
|
159 |
+
model.save_pretrained('./ckpt')
|
160 |
+
```
|
161 |
+
|
162 |
+
### Start with M3D-Seg dataset
|
163 |
+
|
164 |
+
We have released 25 open source datasets(M3D-Seg) for training SegVol, and these preprocessed data have been uploaded to [ModelScope](https://www.modelscope.cn/datasets/GoodBaiBai88/M3D-Seg/summary) and [HuggingFace](https://huggingface.co/datasets/GoodBaiBai88/M3D-Seg).
|
165 |
+
You can use the following script to easily load cases and insert them into Test script and Training script.
|
166 |
+
|
167 |
+
我们已经发布了用于训练SegVol的25个开源数据集(M3D-Seg),并将预处理后的数据上传到了[ModelScope](https://www.modelscope.cn/datasets/GoodBaiBai88/M3D-Seg/summary)和[HuggingFace](https://huggingface.co/datasets/GoodBaiBai88/M3D-Seg)。
|
168 |
+
您可以使用下面的script方便地载入,并插入到Test script和Training script中。
|
169 |
+
|
170 |
+
```python
|
171 |
+
import json, os
|
172 |
+
M3D_Seg_path = 'path/to/M3D-Seg'
|
173 |
+
|
174 |
+
# select a dataset
|
175 |
+
dataset_code = '0000'
|
176 |
+
|
177 |
+
# load json dict
|
178 |
+
json_path = os.path.join(M3D_Seg_path, dataset_code, dataset_code + '.json')
|
179 |
+
with open(json_path, 'r') as f:
|
180 |
+
dataset_dict = json.load(f)
|
181 |
+
|
182 |
+
# get a case
|
183 |
+
ct_path = os.path.join(M3D_Seg_path, dataset_dict['train'][0]['image'])
|
184 |
+
gt_path = os.path.join(M3D_Seg_path, dataset_dict['train'][0]['label'])
|
185 |
+
|
186 |
+
# get categories
|
187 |
+
categories_dict = dataset_dict['labels']
|
188 |
+
categories = [x for _, x in categories_dict.items() if x != "background"]
|
189 |
+
|
190 |
+
# load npy data format
|
191 |
+
ct_npy, gt_npy = model.processor.load_uniseg_case(ct_path, gt_path)
|
192 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SegVolModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "model_segvol_single.SegVolConfig",
|
7 |
+
"AutoModel": "model_segvol_single.SegVolModel"
|
8 |
+
},
|
9 |
+
"model_type": "segvol",
|
10 |
+
"patch_size": [
|
11 |
+
4,
|
12 |
+
16,
|
13 |
+
16
|
14 |
+
],
|
15 |
+
"spatial_size": [
|
16 |
+
32,
|
17 |
+
256,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"test_mode": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.18.0"
|
23 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_segvol_single.py
ADDED
@@ -0,0 +1,1951 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
import numpy as np
|
3 |
+
import monai.transforms as transforms
|
4 |
+
import nibabel as nib
|
5 |
+
from scipy import sparse
|
6 |
+
import ast
|
7 |
+
|
8 |
+
class SegVolConfig(PretrainedConfig):
|
9 |
+
model_type = "segvol"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
test_mode=True,
|
14 |
+
**kwargs,
|
15 |
+
):
|
16 |
+
self.spatial_size = [32, 256, 256]
|
17 |
+
self.patch_size = [4, 16, 16]
|
18 |
+
self.test_mode = test_mode
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
|
21 |
+
class SegVolModel(PreTrainedModel):
|
22 |
+
config_class = SegVolConfig
|
23 |
+
|
24 |
+
def __init__(self, config):
|
25 |
+
super().__init__(config)
|
26 |
+
sam_model = _build_sam(
|
27 |
+
image_encoder_type='vit',
|
28 |
+
embed_dim = 768,
|
29 |
+
patch_size=self.config.patch_size,
|
30 |
+
checkpoint=None,
|
31 |
+
image_size=self.config.spatial_size,
|
32 |
+
)
|
33 |
+
self.model = SegVol(
|
34 |
+
image_encoder=sam_model.image_encoder,
|
35 |
+
mask_decoder=sam_model.mask_decoder,
|
36 |
+
prompt_encoder=sam_model.prompt_encoder,
|
37 |
+
roi_size=self.config.spatial_size,
|
38 |
+
patch_size=self.config.patch_size,
|
39 |
+
# clip_model=self.config.clip_model,
|
40 |
+
test_mode=self.config.test_mode,
|
41 |
+
)
|
42 |
+
|
43 |
+
self.processor = SegVolProcessor(spatial_size=self.config.spatial_size)
|
44 |
+
|
45 |
+
def forward_test(self,
|
46 |
+
image,
|
47 |
+
zoomed_image=None,
|
48 |
+
text_prompt=None,
|
49 |
+
bbox_prompt_group=None,
|
50 |
+
point_prompt_group=None,
|
51 |
+
use_zoom=True,):
|
52 |
+
device = image.device
|
53 |
+
assert image.shape[0] == 1 and zoomed_image.shape[0] == 1, 'batch size should be 1'
|
54 |
+
assert not (text_prompt is None and bbox_prompt_group is None and point_prompt_group is None), 'Drive SegVol using at least one type of prompt'
|
55 |
+
bbox_prompt, bbox_prompt_map, point_prompt, point_prompt_map=None, None, None, None
|
56 |
+
if bbox_prompt_group is not None:
|
57 |
+
bbox_prompt, bbox_prompt_map = bbox_prompt_group
|
58 |
+
if point_prompt_group is not None:
|
59 |
+
point_prompt, point_prompt_map = point_prompt_group
|
60 |
+
volume_shape = image[0][0].shape
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
logits_global_single = self.model(zoomed_image,
|
64 |
+
text=text_prompt,
|
65 |
+
boxes=bbox_prompt,
|
66 |
+
points=point_prompt)
|
67 |
+
logits_global_single = F.interpolate(
|
68 |
+
logits_global_single.cpu(),
|
69 |
+
size=volume_shape, mode='nearest')
|
70 |
+
if not use_zoom:
|
71 |
+
return logits_global_single
|
72 |
+
|
73 |
+
if point_prompt_map is not None:
|
74 |
+
binary_points = F.interpolate(
|
75 |
+
point_prompt_map.float(),
|
76 |
+
size=volume_shape, mode='nearest')
|
77 |
+
if bbox_prompt_map is not None:
|
78 |
+
binary_cube = F.interpolate(
|
79 |
+
bbox_prompt_map.float(),
|
80 |
+
size=volume_shape, mode='nearest')
|
81 |
+
|
82 |
+
min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(self.config.spatial_size, logits_global_single[0][0])
|
83 |
+
if min_d is None:
|
84 |
+
print('Fail to detect foreground!')
|
85 |
+
return logits_global_single
|
86 |
+
|
87 |
+
# Crop roi
|
88 |
+
image_single_cropped = image[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
|
89 |
+
global_preds = (torch.sigmoid(logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long()
|
90 |
+
|
91 |
+
assert not (bbox_prompt is not None and point_prompt is not None), 'Do not use point prompt and box prompt at the same time.'
|
92 |
+
prompt_reflection = None
|
93 |
+
if bbox_prompt is not None:
|
94 |
+
binary_cube_cropped = binary_cube[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
|
95 |
+
prompt_reflection = (
|
96 |
+
binary_cube_cropped,
|
97 |
+
global_preds
|
98 |
+
)
|
99 |
+
if point_prompt is not None:
|
100 |
+
binary_points_cropped = binary_points[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
|
101 |
+
prompt_reflection = (
|
102 |
+
binary_points_cropped,
|
103 |
+
global_preds
|
104 |
+
)
|
105 |
+
|
106 |
+
## inference
|
107 |
+
with torch.no_grad():
|
108 |
+
logits_single_cropped = sliding_window_inference(
|
109 |
+
image_single_cropped.to(device), prompt_reflection,
|
110 |
+
self.config.spatial_size, 1, self.model, 0.5,
|
111 |
+
text=text_prompt,
|
112 |
+
use_box=bbox_prompt is not None,
|
113 |
+
use_point=point_prompt is not None,
|
114 |
+
)
|
115 |
+
logits_single_cropped = logits_single_cropped.cpu().squeeze()
|
116 |
+
logits_global_single[:, :, min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped
|
117 |
+
return logits_global_single
|
118 |
+
|
119 |
+
def forward_train(self, image, train_organs, train_labels):
|
120 |
+
loss = self.model(image, text=None, boxes=None, points=None,
|
121 |
+
train_organs=train_organs,
|
122 |
+
train_labels=train_labels)
|
123 |
+
return loss
|
124 |
+
|
125 |
+
def forward(self, **kwargs):
|
126 |
+
if self.config.test_mode:
|
127 |
+
return self.forward_test(kwargs['image'],
|
128 |
+
kwargs['zoomed_image'],
|
129 |
+
kwargs['text_prompt'],
|
130 |
+
kwargs['bbox_prompt_group'],
|
131 |
+
kwargs['point_prompt_group'],
|
132 |
+
kwargs['use_zoom'])
|
133 |
+
else:
|
134 |
+
return self.forward_train(kwargs['image'],
|
135 |
+
kwargs['train_organs'],
|
136 |
+
kwargs['train_labels'])
|
137 |
+
|
138 |
+
# processor
|
139 |
+
class SegVolProcessor():
|
140 |
+
def __init__(self, spatial_size) -> None:
|
141 |
+
self.img_loader = transforms.LoadImage()
|
142 |
+
self.transform4test = transforms.Compose(
|
143 |
+
[
|
144 |
+
DimTranspose(keys=["image", "label"]),
|
145 |
+
MinMaxNormalization(),
|
146 |
+
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
|
147 |
+
transforms.ToTensord(keys=["image", "label"]),
|
148 |
+
]
|
149 |
+
)
|
150 |
+
self.zoom_out_transform = transforms.Resized(keys=["image", "label"], spatial_size=spatial_size, mode='nearest-exact')
|
151 |
+
self.transform4train = transforms.Compose(
|
152 |
+
[
|
153 |
+
# transforms.AddChanneld(keys=["image"]),
|
154 |
+
DimTranspose(keys=["image", "label"]),
|
155 |
+
MinMaxNormalization(),
|
156 |
+
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
|
157 |
+
transforms.SpatialPadd(keys=["image", "label"], spatial_size=spatial_size, mode='constant'),
|
158 |
+
transforms.OneOf(transforms=[
|
159 |
+
transforms.Resized(keys=["image", "label"],spatial_size=spatial_size),
|
160 |
+
transforms.RandCropByPosNegLabeld(
|
161 |
+
keys=["image", "label"],
|
162 |
+
label_key="label",
|
163 |
+
spatial_size=spatial_size,
|
164 |
+
pos=2,
|
165 |
+
neg=1,
|
166 |
+
num_samples=1,
|
167 |
+
image_key="image",
|
168 |
+
image_threshold=0,
|
169 |
+
),
|
170 |
+
],
|
171 |
+
weights=[1, 3]
|
172 |
+
),
|
173 |
+
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=0),
|
174 |
+
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=1),
|
175 |
+
transforms.RandFlipd(keys=["image", "label"], prob=0.2, spatial_axis=2),
|
176 |
+
transforms.RandScaleIntensityd(keys="image", factors=0.2, prob=0.2),
|
177 |
+
transforms.RandShiftIntensityd(keys="image", offsets=0.2, prob=0.2),
|
178 |
+
transforms.ToTensord(keys=["image", "label"]),
|
179 |
+
]
|
180 |
+
)
|
181 |
+
|
182 |
+
# ct_path is path for a ct scan file with nii.gz format
|
183 |
+
# gt_path is path for a ground truth file with nii.gz format
|
184 |
+
def preprocess_ct_gt(self, ct_path, gt_path, category):
|
185 |
+
item = {}
|
186 |
+
# generate ct_voxel_ndarray
|
187 |
+
ct_voxel_ndarray, _ = self.img_loader(ct_path)
|
188 |
+
ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze()
|
189 |
+
ct_shape = ct_voxel_ndarray.shape
|
190 |
+
ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0)
|
191 |
+
ct_voxel_ndarray = self.ForegroundNorm(ct_voxel_ndarray)
|
192 |
+
item['image'] = ct_voxel_ndarray
|
193 |
+
|
194 |
+
# generate gt_voxel_ndarray
|
195 |
+
gt_voxel_ndarray, _ = self.img_loader(gt_path)
|
196 |
+
gt_voxel_ndarray = np.array(gt_voxel_ndarray)
|
197 |
+
present_categories = np.unique(gt_voxel_ndarray)
|
198 |
+
gt_masks = []
|
199 |
+
for cls_idx in range(len(category)):
|
200 |
+
# ignore background
|
201 |
+
cls = cls_idx + 1
|
202 |
+
if cls not in present_categories:
|
203 |
+
gt_voxel_ndarray_category = np.zeros(ct_shape)
|
204 |
+
gt_masks.append(gt_voxel_ndarray_category)
|
205 |
+
else:
|
206 |
+
gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
|
207 |
+
gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
|
208 |
+
gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
|
209 |
+
gt_masks.append(gt_voxel_ndarray_category)
|
210 |
+
gt_voxel_ndarray = np.stack(gt_masks, axis=0)
|
211 |
+
assert gt_voxel_ndarray.shape[0] == len(category) and gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
|
212 |
+
item['label'] = gt_voxel_ndarray.astype(np.int32)
|
213 |
+
|
214 |
+
# transform
|
215 |
+
return item['image'], item['label']
|
216 |
+
|
217 |
+
def load_uniseg_case(self, ct_npy_path, gt_npy_path):
|
218 |
+
img_array = np.load(ct_npy_path)
|
219 |
+
allmatrix_sp= sparse.load_npz(gt_npy_path)
|
220 |
+
if 'mask_' in gt_npy_path:
|
221 |
+
gt_shape = ast.literal_eval(gt_npy_path.split('_')[-1].replace('.npz', ''))
|
222 |
+
else:
|
223 |
+
gt_shape = ast.literal_eval(gt_npy_path.split('.')[-2])
|
224 |
+
gt_array=allmatrix_sp.toarray().reshape(gt_shape)
|
225 |
+
return img_array, gt_array
|
226 |
+
|
227 |
+
def ForegroundNorm(self, ct_narray):
|
228 |
+
ct_voxel_ndarray = ct_narray.copy()
|
229 |
+
ct_voxel_ndarray = ct_voxel_ndarray.flatten()
|
230 |
+
thred = np.mean(ct_voxel_ndarray)
|
231 |
+
voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
|
232 |
+
upper_bound = np.percentile(voxel_filtered, 99.95)
|
233 |
+
lower_bound = np.percentile(voxel_filtered, 00.05)
|
234 |
+
mean = np.mean(voxel_filtered)
|
235 |
+
std = np.std(voxel_filtered)
|
236 |
+
ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
|
237 |
+
ct_narray = (ct_narray - mean) / max(std, 1e-8)
|
238 |
+
return ct_narray
|
239 |
+
|
240 |
+
def zoom_transform(self, ct_npy, gt_npy):
|
241 |
+
item = {
|
242 |
+
'image': ct_npy,
|
243 |
+
'label': gt_npy
|
244 |
+
}
|
245 |
+
item = self.transform4test(item)
|
246 |
+
item_zoom_out = self.zoom_out_transform(item)
|
247 |
+
item['zoom_out_image'] = item_zoom_out['image']
|
248 |
+
item['zoom_out_label'] = item_zoom_out['label']
|
249 |
+
return item
|
250 |
+
|
251 |
+
def point_prompt_b(self, label_single_resize, num_positive_extra=4, num_negative_extra=0, device='cpu'):
|
252 |
+
point, point_label = select_points(label_single_resize, num_positive_extra=num_positive_extra, num_negative_extra=num_negative_extra)
|
253 |
+
points_single = (point.unsqueeze(0).float().to(device), point_label.unsqueeze(0).float().to(device))
|
254 |
+
binary_points_resize = build_binary_points(point, point_label, label_single_resize.shape).unsqueeze(0).unsqueeze(0)
|
255 |
+
return points_single, binary_points_resize
|
256 |
+
|
257 |
+
def bbox_prompt_b(self, label_single_resize, device='cpu'):
|
258 |
+
box_single = generate_box(label_single_resize).unsqueeze(0).float().to(device)
|
259 |
+
binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=label_single_resize.shape).unsqueeze(0).unsqueeze(0)
|
260 |
+
return box_single, binary_cube_resize
|
261 |
+
|
262 |
+
def dice_score(self, preds, labels, device='cpu'):
|
263 |
+
assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match\n" + str(preds.shape) + str(labels.shape)
|
264 |
+
predict = preds.view(1, -1).to(device)
|
265 |
+
target = labels.view(1, -1).to(device)
|
266 |
+
|
267 |
+
predict = torch.sigmoid(predict)
|
268 |
+
predict = torch.where(predict > 0.5, 1., 0.)
|
269 |
+
|
270 |
+
tp = torch.sum(torch.mul(predict, target))
|
271 |
+
den = torch.sum(predict) + torch.sum(target) + 1
|
272 |
+
dice = 2 * tp / den
|
273 |
+
return dice
|
274 |
+
|
275 |
+
def save_preds(self, ct_path, save_path, logits_mask, start_coord, end_coord):
|
276 |
+
ct = nib.load(ct_path)
|
277 |
+
logits_mask = logits_mask.transpose(-1, -3)
|
278 |
+
start_coord[-1], start_coord[-3] = start_coord[-3], start_coord[-1]
|
279 |
+
end_coord[-1], end_coord[-3] = end_coord[-3], end_coord[-1]
|
280 |
+
preds_save = torch.zeros(ct.shape)
|
281 |
+
preds_save[start_coord[0]:end_coord[0],
|
282 |
+
start_coord[1]:end_coord[1],
|
283 |
+
start_coord[2]:end_coord[2]] = torch.sigmoid(logits_mask)
|
284 |
+
preds_save = torch.where(preds_save > 0.5, 1., 0.).numpy()
|
285 |
+
preds_nii = nib.Nifti1Image(preds_save, affine=ct.affine, header=ct.header)
|
286 |
+
nib.save(preds_nii, save_path)
|
287 |
+
|
288 |
+
def train_transform(self, ct_npy, gt_npy):
|
289 |
+
item = {
|
290 |
+
'image': ct_npy,
|
291 |
+
'label': gt_npy
|
292 |
+
}
|
293 |
+
item = self.transform4train(item)
|
294 |
+
if type(item) is list:
|
295 |
+
assert len(item) == 1
|
296 |
+
item = item[0]
|
297 |
+
return item
|
298 |
+
|
299 |
+
class MinMaxNormalization(transforms.Transform):
|
300 |
+
def __call__(self, data):
|
301 |
+
d = dict(data)
|
302 |
+
k = "image"
|
303 |
+
d[k] = d[k] - d[k].min()
|
304 |
+
d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None)
|
305 |
+
return d
|
306 |
+
|
307 |
+
class DimTranspose(transforms.Transform):
|
308 |
+
def __init__(self, keys):
|
309 |
+
self.keys = keys
|
310 |
+
|
311 |
+
def __call__(self, data):
|
312 |
+
d = dict(data)
|
313 |
+
for key in self.keys:
|
314 |
+
d[key] = np.swapaxes(d[key], -1, -3)
|
315 |
+
return d
|
316 |
+
|
317 |
+
# prompts
|
318 |
+
def generate_box(pred_pre, bbox_shift=None):
|
319 |
+
meaning_post_label = pred_pre # [h, w, d]
|
320 |
+
ones_idx = (meaning_post_label > 0).nonzero(as_tuple=True)
|
321 |
+
if all(tensor.nelement() == 0 for tensor in ones_idx):
|
322 |
+
bboxes = torch.tensor([-1,-1,-1,-1,-1,-1])
|
323 |
+
return bboxes
|
324 |
+
min_coords = [dim.min() for dim in ones_idx] # [x_min, y_min, z_min]
|
325 |
+
max_coords = [dim.max() for dim in ones_idx] # [x_max, y_max, z_max]
|
326 |
+
|
327 |
+
|
328 |
+
if bbox_shift is None:
|
329 |
+
corner_min = []
|
330 |
+
corner_max = []
|
331 |
+
shape = meaning_post_label.shape
|
332 |
+
for coor in min_coords:
|
333 |
+
coor_ = max(0, coor)
|
334 |
+
corner_min.append(coor_)
|
335 |
+
for idx, coor in enumerate(max_coords):
|
336 |
+
coor_ = min(shape[idx], coor)
|
337 |
+
corner_max.append(coor_)
|
338 |
+
corner_min = torch.tensor(corner_min)
|
339 |
+
corner_max = torch.tensor(corner_max)
|
340 |
+
return torch.cat((corner_min, corner_max), dim=0)
|
341 |
+
else:
|
342 |
+
# add perturbation to bounding box coordinates
|
343 |
+
corner_min = []
|
344 |
+
corner_max = []
|
345 |
+
shape = meaning_post_label.shape
|
346 |
+
for coor in min_coords:
|
347 |
+
coor_ = max(0, coor + random.randint(-bbox_shift, bbox_shift))
|
348 |
+
corner_min.append(coor_)
|
349 |
+
for idx, coor in enumerate(max_coords):
|
350 |
+
coor_ = min(shape[idx], coor + random.randint(-bbox_shift, bbox_shift))
|
351 |
+
corner_max.append(coor_)
|
352 |
+
corner_min = torch.tensor(corner_min)
|
353 |
+
corner_max = torch.tensor(corner_max)
|
354 |
+
return torch.cat((corner_min, corner_max), dim=0)
|
355 |
+
|
356 |
+
|
357 |
+
def select_points(preds, num_positive_extra=4, num_negative_extra=0, fix_extra_point_num=None):
|
358 |
+
spacial_dim = 3
|
359 |
+
points = torch.zeros((0, 3))
|
360 |
+
labels = torch.zeros((0))
|
361 |
+
pos_thred = 0.9
|
362 |
+
neg_thred = 0.1
|
363 |
+
|
364 |
+
# get pos/net indices
|
365 |
+
positive_indices = torch.nonzero(preds > pos_thred, as_tuple=True) # ([pos x], [pos y], [pos z])
|
366 |
+
negative_indices = torch.nonzero(preds < neg_thred, as_tuple=True)
|
367 |
+
|
368 |
+
ones_idx = (preds > pos_thred).nonzero(as_tuple=True)
|
369 |
+
if all(tmp.nelement() == 0 for tmp in ones_idx):
|
370 |
+
# all neg
|
371 |
+
num_positive_extra = 0
|
372 |
+
selected_positive_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
373 |
+
points = torch.cat((points, selected_positive_point), dim=0)
|
374 |
+
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
375 |
+
else:
|
376 |
+
# random select a pos point
|
377 |
+
random_idx = torch.randint(len(positive_indices[0]), (1,))
|
378 |
+
selected_positive_point = torch.tensor([positive_indices[i][random_idx] for i in range(spacial_dim)]).unsqueeze(dim=0)
|
379 |
+
points = torch.cat((points, selected_positive_point), dim=0)
|
380 |
+
labels = torch.cat((labels, torch.ones((1))))
|
381 |
+
|
382 |
+
if num_positive_extra > 0:
|
383 |
+
pos_idx_list = torch.randperm(len(positive_indices[0]))[:num_positive_extra]
|
384 |
+
extra_positive_points = []
|
385 |
+
for pos_idx in pos_idx_list:
|
386 |
+
extra_positive_points.append([positive_indices[i][pos_idx] for i in range(spacial_dim)])
|
387 |
+
extra_positive_points = torch.tensor(extra_positive_points).reshape(-1, 3)
|
388 |
+
points = torch.cat((points, extra_positive_points), dim=0)
|
389 |
+
labels = torch.cat((labels, torch.ones((extra_positive_points.shape[0]))))
|
390 |
+
|
391 |
+
if num_negative_extra > 0:
|
392 |
+
neg_idx_list = torch.randperm(len(negative_indices[0]))[:num_negative_extra]
|
393 |
+
extra_negative_points = []
|
394 |
+
for neg_idx in neg_idx_list:
|
395 |
+
extra_negative_points.append([negative_indices[i][neg_idx] for i in range(spacial_dim)])
|
396 |
+
extra_negative_points = torch.tensor(extra_negative_points).reshape(-1, 3)
|
397 |
+
points = torch.cat((points, extra_negative_points), dim=0)
|
398 |
+
labels = torch.cat((labels, torch.zeros((extra_negative_points.shape[0]))))
|
399 |
+
|
400 |
+
if fix_extra_point_num is None:
|
401 |
+
left_point_num = num_positive_extra + num_negative_extra + 1 - labels.shape[0]
|
402 |
+
else:
|
403 |
+
left_point_num = fix_extra_point_num + 1 - labels.shape[0]
|
404 |
+
|
405 |
+
for _ in range(left_point_num):
|
406 |
+
ignore_point = torch.tensor([-1,-1,-1]).unsqueeze(dim=0)
|
407 |
+
points = torch.cat((points, ignore_point), dim=0)
|
408 |
+
labels = torch.cat((labels, torch.tensor([-1]).reshape(1)))
|
409 |
+
|
410 |
+
return points, labels
|
411 |
+
|
412 |
+
# SegVol
|
413 |
+
import torch
|
414 |
+
import torch.nn as nn
|
415 |
+
import torch.nn.functional as F
|
416 |
+
import numpy as np
|
417 |
+
from transformers import CLIPTextModel, CLIPTextConfig
|
418 |
+
import random
|
419 |
+
|
420 |
+
#%% set up model
|
421 |
+
class SegVol(nn.Module):
|
422 |
+
def __init__(self,
|
423 |
+
image_encoder,
|
424 |
+
mask_decoder,
|
425 |
+
prompt_encoder,
|
426 |
+
roi_size,
|
427 |
+
patch_size,
|
428 |
+
# clip_model,
|
429 |
+
test_mode=False,
|
430 |
+
):
|
431 |
+
super().__init__()
|
432 |
+
self.image_encoder = image_encoder
|
433 |
+
self.mask_decoder = mask_decoder
|
434 |
+
self.prompt_encoder = prompt_encoder
|
435 |
+
self.text_encoder = TextEncoder()
|
436 |
+
self.feat_shape = np.array(roi_size)/np.array(patch_size)
|
437 |
+
self.test_mode = test_mode
|
438 |
+
self.dice_loss = BinaryDiceLoss()
|
439 |
+
self.bce_loss = BCELoss()
|
440 |
+
self.decoder_iter = 6
|
441 |
+
|
442 |
+
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
|
443 |
+
bs = image.shape[0]
|
444 |
+
img_shape = (image.shape[2], image.shape[3], image.shape[4])
|
445 |
+
image_embedding, _ = self.image_encoder(image)
|
446 |
+
image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
|
447 |
+
int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
|
448 |
+
# test mode
|
449 |
+
if self.test_mode:
|
450 |
+
return self.forward_decoder(image_embedding, img_shape, text, boxes, points)
|
451 |
+
|
452 |
+
# train mode
|
453 |
+
## sl
|
454 |
+
sl_loss = self.supervised_forward(image, image_embedding, img_shape, kwargs['train_organs'], kwargs['train_labels'])
|
455 |
+
## ssl
|
456 |
+
# ssl_loss = self.unsupervised_forward(image, image_embedding, kwargs['pseudo_seg_cleaned'], img_shape)
|
457 |
+
return sl_loss
|
458 |
+
|
459 |
+
def forward_decoder(self, image_embedding, img_shape, text=None, boxes=None, points=None):
|
460 |
+
device = image_embedding.device
|
461 |
+
with torch.no_grad():
|
462 |
+
if boxes is not None:
|
463 |
+
if len(boxes.shape) == 2:
|
464 |
+
boxes = boxes[:, None, :] # (B, 1, 6)
|
465 |
+
if text is not None:
|
466 |
+
text_embedding = self.text_encoder(text, device) # (B, 768)
|
467 |
+
else:
|
468 |
+
text_embedding = None
|
469 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
470 |
+
points=points,
|
471 |
+
boxes=boxes,
|
472 |
+
masks=None,
|
473 |
+
text_embedding=text_embedding,
|
474 |
+
)
|
475 |
+
|
476 |
+
dense_pe = self.prompt_encoder.get_dense_pe()
|
477 |
+
low_res_masks, _ = self.mask_decoder(
|
478 |
+
image_embeddings=image_embedding,
|
479 |
+
text_embedding = text_embedding,
|
480 |
+
image_pe=dense_pe,
|
481 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
482 |
+
dense_prompt_embeddings=dense_embeddings,
|
483 |
+
multimask_output=False,
|
484 |
+
)
|
485 |
+
logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
|
486 |
+
return logits
|
487 |
+
|
488 |
+
def supervised_forward(self, image, image_embedding, img_shape, training_organs, train_labels):
|
489 |
+
device = image_embedding.device
|
490 |
+
iter_points, iter_bboxes, iter_organs = self.build_prompt_label(image.shape[0], training_organs, train_labels, device)
|
491 |
+
# select prompt
|
492 |
+
prompt_options = [[None, iter_points, iter_organs], [iter_bboxes, None, iter_organs],
|
493 |
+
[None, None, iter_organs], [iter_bboxes, None, None], [None, iter_points, None],
|
494 |
+
[iter_bboxes, iter_points, None]]
|
495 |
+
sl_loss = 0
|
496 |
+
for prompt in prompt_options:
|
497 |
+
bboxes, points, organs = prompt
|
498 |
+
logits = self.forward_decoder(image_embedding, img_shape, text=organs, boxes=bboxes, points=points)
|
499 |
+
# cal loss
|
500 |
+
sl_loss_dice = self.dice_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
|
501 |
+
sl_loss_bce = self.bce_loss.forward(logits.squeeze().float(), train_labels.squeeze().float())
|
502 |
+
sl_loss += sl_loss_dice + sl_loss_bce
|
503 |
+
return sl_loss
|
504 |
+
|
505 |
+
# def unsupervised_forward(self, image, image_embedding, pseudo_seg_cleaned, img_shape):
|
506 |
+
# sll_loss = 0
|
507 |
+
# for iter in range(self.decoder_iter):
|
508 |
+
# if iter % 2 == 0:
|
509 |
+
# pseudo_labels, pseudo_points_prompt = self.build_pseudo_point_prompt_label(image.shape, pseudo_seg_cleaned)
|
510 |
+
# logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=None, points=pseudo_points_prompt)
|
511 |
+
# else:
|
512 |
+
# pseudo_labels, pseudo_bboxes_prompt = self.build_pseudo_box_prompt_label(image.shape, pseudo_seg_cleaned)
|
513 |
+
# logits = self.forward_decoder(image_embedding, img_shape, text=None, boxes=pseudo_bboxes_prompt, points=None)
|
514 |
+
# # cal loss
|
515 |
+
# sll_loss_dice = self.dice_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
|
516 |
+
# sll_loss_bce = self.bce_loss.forward(logits.squeeze().float(), pseudo_labels.squeeze().float())
|
517 |
+
# sll_loss += sll_loss_dice + sll_loss_bce
|
518 |
+
# return sll_loss
|
519 |
+
|
520 |
+
def build_prompt_label(self, bs, training_organs, train_labels, device):
|
521 |
+
# generate prompt & label
|
522 |
+
iter_organs = []
|
523 |
+
iter_bboxes = []
|
524 |
+
iter_points_ax = []
|
525 |
+
iter_point_labels = []
|
526 |
+
for sample_idx in range(bs):
|
527 |
+
# organ prompt
|
528 |
+
iter_organs.append(training_organs)
|
529 |
+
# box prompt
|
530 |
+
box = generate_box(train_labels[sample_idx], bbox_shift=10)
|
531 |
+
iter_bboxes.append(box)
|
532 |
+
# point prompt
|
533 |
+
num_positive_extra_max, num_negative_extra_max = 10, 10
|
534 |
+
num_positive_extra = random.randint(0, num_positive_extra_max)
|
535 |
+
num_negative_extra = random.randint(0, num_negative_extra_max)
|
536 |
+
point, point_label = select_points(
|
537 |
+
train_labels[sample_idx],
|
538 |
+
num_positive_extra=num_positive_extra,
|
539 |
+
num_negative_extra=num_negative_extra,
|
540 |
+
fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
|
541 |
+
iter_points_ax.append(point)
|
542 |
+
iter_point_labels.append(point_label)
|
543 |
+
# batched prompt
|
544 |
+
iter_points_ax = torch.stack(iter_points_ax, dim=0).to(device)
|
545 |
+
iter_point_labels = torch.stack(iter_point_labels, dim=0).to(device)
|
546 |
+
iter_points = (iter_points_ax, iter_point_labels)
|
547 |
+
iter_bboxes = torch.stack(iter_bboxes, dim=0).float().to(device)
|
548 |
+
return iter_points, iter_bboxes, iter_organs
|
549 |
+
|
550 |
+
# def build_pseudo_point_prompt_label(self, input_shape, seg_labels):
|
551 |
+
# pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
|
552 |
+
# # generate points
|
553 |
+
# points = []
|
554 |
+
# point_labels = []
|
555 |
+
# for batch_idx in range(input_shape[0]):
|
556 |
+
# # generate pseudo label
|
557 |
+
# unique_ids = torch.unique(seg_labels[batch_idx])
|
558 |
+
# unique_ids = unique_ids[unique_ids != -1]
|
559 |
+
# region_id = random.choice(unique_ids).item()
|
560 |
+
# pseudo_labels[batch_idx][seg_labels[batch_idx]==region_id] = 1
|
561 |
+
# # generate point prompt
|
562 |
+
# num_positive_extra_max, num_negative_extra_max = 10, 10
|
563 |
+
# num_positive_extra = random.randint(4, num_positive_extra_max)
|
564 |
+
# num_negative_extra = random.randint(0, num_negative_extra_max)
|
565 |
+
# assert len(pseudo_labels[batch_idx][0].shape) == 3
|
566 |
+
# point, point_label = select_points(
|
567 |
+
# pseudo_labels[batch_idx][0],
|
568 |
+
# num_positive_extra=num_positive_extra,
|
569 |
+
# num_negative_extra=num_negative_extra,
|
570 |
+
# fix_extra_point_num=num_positive_extra_max + num_negative_extra_max)
|
571 |
+
# points.append(point)
|
572 |
+
# point_labels.append(point_label)
|
573 |
+
# points = torch.stack(points, dim=0).to(self.custom_device)
|
574 |
+
# point_labels = torch.stack(point_labels, dim=0).to(self.custom_device)
|
575 |
+
# pseudo_points_prompt = (points, point_labels)
|
576 |
+
# return pseudo_labels, pseudo_points_prompt
|
577 |
+
|
578 |
+
# def build_pseudo_box_prompt_label(self, input_shape, seg_labels_cleaned):
|
579 |
+
# pseudo_labels = torch.zeros(input_shape).to(self.custom_device)
|
580 |
+
# iter_bboxes = []
|
581 |
+
# # generate boxes
|
582 |
+
# for batch_idx in range(input_shape[0]):
|
583 |
+
# # generate ori pseudo label
|
584 |
+
# unique_ids = torch.unique(seg_labels_cleaned[batch_idx])
|
585 |
+
# unique_ids = unique_ids[unique_ids != -1]
|
586 |
+
# region_id = random.choice(unique_ids).item()
|
587 |
+
# pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==region_id] = 1
|
588 |
+
# # generate box prompt
|
589 |
+
# box = generate_box(pseudo_labels[batch_idx][0])
|
590 |
+
# iter_bboxes.append(box)
|
591 |
+
# # refine pseudo label
|
592 |
+
# x_min, y_min, z_min, x_max, y_max, z_max = box
|
593 |
+
# binary_cube = torch.zeros_like(pseudo_labels[batch_idx][0]).int()
|
594 |
+
# binary_cube[x_min:x_max+1, y_min:y_max+1, z_min:z_max+1] = 1
|
595 |
+
# # cal iou
|
596 |
+
# mask_label = seg_labels_cleaned[batch_idx][0]
|
597 |
+
# assert binary_cube.shape == mask_label.shape, str(binary_cube.shape) + ' ' + str(mask_label.shape)
|
598 |
+
# mask_values_in_binary_cube = mask_label[binary_cube == 1]
|
599 |
+
# unique_mask_values = torch.unique(mask_values_in_binary_cube)
|
600 |
+
# # print('unique_mask_values ', unique_mask_values)
|
601 |
+
# for value in unique_mask_values:
|
602 |
+
# if value == -1: continue
|
603 |
+
# mask_area = (mask_label == value)
|
604 |
+
# intersection = (binary_cube & mask_area)
|
605 |
+
# iou = intersection.float().sum() / mask_area.float().sum()
|
606 |
+
# if iou > 0.90:
|
607 |
+
# # print(f"Mask value {value} has IOU > 0.90 in binary cube.")
|
608 |
+
# pseudo_labels[batch_idx][seg_labels_cleaned[batch_idx]==value] = 1
|
609 |
+
|
610 |
+
# bboxes = torch.stack(iter_bboxes, dim=0).float().to(self.custom_device)
|
611 |
+
# return pseudo_labels, bboxes
|
612 |
+
|
613 |
+
class TextEncoder(nn.Module):
|
614 |
+
def __init__(self):
|
615 |
+
super().__init__()
|
616 |
+
config = CLIPTextConfig()
|
617 |
+
self.clip_text_model = CLIPTextModel(config)
|
618 |
+
self.tokenizer = None
|
619 |
+
self.dim_align = nn.Linear(512, 768)
|
620 |
+
# freeze text encoder
|
621 |
+
for param in self.clip_text_model.parameters():
|
622 |
+
param.requires_grad = False
|
623 |
+
|
624 |
+
def organ2tokens(self, organ_names, device):
|
625 |
+
text_list = ['A computerized tomography of a {}.'.format(organ_name) for organ_name in organ_names]
|
626 |
+
tokens = self.tokenizer(text_list, padding=True, return_tensors="pt")
|
627 |
+
for key in tokens.keys():
|
628 |
+
tokens[key] = tokens[key].to(device)
|
629 |
+
return tokens
|
630 |
+
|
631 |
+
def forward(self, text, device):
|
632 |
+
if text is None:
|
633 |
+
return None
|
634 |
+
if type(text) is str:
|
635 |
+
# text is supposed to be list
|
636 |
+
text = [text]
|
637 |
+
tokens = self.organ2tokens(text, device)
|
638 |
+
clip_outputs = self.clip_text_model(**tokens)
|
639 |
+
text_embedding = clip_outputs.pooler_output
|
640 |
+
text_embedding = self.dim_align(text_embedding)
|
641 |
+
return text_embedding
|
642 |
+
|
643 |
+
# loss
|
644 |
+
import torch
|
645 |
+
import torch.nn as nn
|
646 |
+
|
647 |
+
class BinaryDiceLoss(nn.Module):
|
648 |
+
def __init__(self, smooth=1, p=2, reduction='mean'):
|
649 |
+
super(BinaryDiceLoss, self).__init__()
|
650 |
+
self.smooth = smooth
|
651 |
+
self.p = p
|
652 |
+
self.reduction = reduction
|
653 |
+
|
654 |
+
def forward(self, predict, target):
|
655 |
+
predict = torch.sigmoid(predict)
|
656 |
+
target_ = target.clone()
|
657 |
+
target_[target == -1] = 0
|
658 |
+
assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
|
659 |
+
predict = predict.contiguous().view(predict.shape[0], -1)
|
660 |
+
target_ = target_.contiguous().view(target_.shape[0], -1)
|
661 |
+
|
662 |
+
num = torch.sum(torch.mul(predict, target_), dim=1)
|
663 |
+
den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
|
664 |
+
|
665 |
+
dice_score = 2*num / den
|
666 |
+
dice_loss = 1 - dice_score
|
667 |
+
|
668 |
+
# dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
|
669 |
+
dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
|
670 |
+
|
671 |
+
return dice_loss_avg
|
672 |
+
|
673 |
+
class BCELoss(nn.Module):
|
674 |
+
def __init__(self):
|
675 |
+
super(BCELoss, self).__init__()
|
676 |
+
self.criterion = nn.BCEWithLogitsLoss()
|
677 |
+
|
678 |
+
def forward(self, predict, target):
|
679 |
+
assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
|
680 |
+
target_ = target.clone()
|
681 |
+
target_[target == -1] = 0
|
682 |
+
|
683 |
+
ce_loss = self.criterion(predict, target_)
|
684 |
+
|
685 |
+
return ce_loss
|
686 |
+
|
687 |
+
# monai inference
|
688 |
+
|
689 |
+
# Copyright (c) MONAI Consortium
|
690 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
691 |
+
# you may not use this file except in compliance with the License.
|
692 |
+
# You may obtain a copy of the License at
|
693 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
694 |
+
# Unless required by applicable law or agreed to in writing, software
|
695 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
696 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
697 |
+
# See the License for the specific language governing permissions and
|
698 |
+
# limitations under the License.
|
699 |
+
|
700 |
+
import warnings
|
701 |
+
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union
|
702 |
+
|
703 |
+
import torch
|
704 |
+
import torch.nn.functional as F
|
705 |
+
import random
|
706 |
+
|
707 |
+
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
|
708 |
+
from monai.transforms import Resize
|
709 |
+
from monai.utils import (
|
710 |
+
BlendMode,
|
711 |
+
PytorchPadMode,
|
712 |
+
convert_data_type,
|
713 |
+
ensure_tuple,
|
714 |
+
fall_back_tuple,
|
715 |
+
look_up_option,
|
716 |
+
optional_import,
|
717 |
+
)
|
718 |
+
|
719 |
+
tqdm, _ = optional_import("tqdm", name="tqdm")
|
720 |
+
|
721 |
+
__all__ = ["sliding_window_inference"]
|
722 |
+
|
723 |
+
def logits2roi_coor(spatial_size, logits_global_single):
|
724 |
+
# crop predict
|
725 |
+
pred_global_single = torch.sigmoid(logits_global_single) > 0.5
|
726 |
+
## get all pos idx
|
727 |
+
nonzero_indices = torch.nonzero(pred_global_single)
|
728 |
+
if nonzero_indices.shape[0] == 0:
|
729 |
+
return None, None, None, None, None, None
|
730 |
+
## get boundary
|
731 |
+
min_d, max_d = nonzero_indices[:, 0].min(), nonzero_indices[:, 0].max()
|
732 |
+
min_h, max_h = nonzero_indices[:, 1].min(), nonzero_indices[:, 1].max()
|
733 |
+
min_w, max_w = nonzero_indices[:, 2].min(), nonzero_indices[:, 2].max()
|
734 |
+
## padding
|
735 |
+
crop_d, crop_h, crop_w = max_d - min_d + 1, max_h - min_h + 1, max_w - min_w + 1,
|
736 |
+
window_d, window_h, window_w = spatial_size
|
737 |
+
padding_d, padding_h, padding_w = max(0, window_d-crop_d), max(0, window_h-crop_h), max(0, window_w-crop_w)
|
738 |
+
global_d, global_h, global_w = logits_global_single.shape
|
739 |
+
min_d = max(0, min_d - int(padding_d)//2)
|
740 |
+
min_h = max(0, min_h - int(padding_h)//2)
|
741 |
+
min_w = max(0, min_w - int(padding_w)//2)
|
742 |
+
max_d = min(global_d, max_d + int(padding_d)//2)
|
743 |
+
max_h = min(global_h, max_h + int(padding_h)//2)
|
744 |
+
max_w = min(global_w, max_w + int(padding_w)//2)
|
745 |
+
return min_d, min_h, min_w, max_d, max_h, max_w
|
746 |
+
|
747 |
+
def build_binary_cube(bbox, binary_cube_shape):
|
748 |
+
min_coord = bbox[0][:3].int().tolist()
|
749 |
+
max_coord = bbox[0][3:].int().tolist()
|
750 |
+
binary_cube = torch.zeros(binary_cube_shape)
|
751 |
+
binary_cube[min_coord[0]:max_coord[0]+1, min_coord[1]:max_coord[1]+1, min_coord[2]:max_coord[2]+1] = 1
|
752 |
+
return binary_cube
|
753 |
+
|
754 |
+
def build_binary_points(points, labels, shape):
|
755 |
+
binary_points = torch.zeros(shape, dtype=torch.int16)
|
756 |
+
binary_points[points[labels == 1, 0].long(), points[labels == 1, 1].long(), points[labels == 1, 2].long()] = 1
|
757 |
+
return binary_points
|
758 |
+
|
759 |
+
def sliding_window_inference(
|
760 |
+
inputs: torch.Tensor,
|
761 |
+
prompt_reflection: Union[torch.Tensor, Tuple[torch.Tensor, ...]],
|
762 |
+
roi_size: Union[Sequence[int], int],
|
763 |
+
sw_batch_size: int,
|
764 |
+
predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
|
765 |
+
overlap: float = 0.25,
|
766 |
+
mode: Union[BlendMode, str] = BlendMode.CONSTANT,
|
767 |
+
sigma_scale: Union[Sequence[float], float] = 0.125,
|
768 |
+
padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
|
769 |
+
cval: float = 0.0,
|
770 |
+
sw_device: Union[torch.device, str, None] = None,
|
771 |
+
device: Union[torch.device, str, None] = None,
|
772 |
+
progress: bool = False,
|
773 |
+
roi_weight_map: Union[torch.Tensor, None] = None,
|
774 |
+
*args: Any,
|
775 |
+
**kwargs: Any,
|
776 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
|
777 |
+
"""
|
778 |
+
Sliding window inference on `inputs` with `predictor`.
|
779 |
+
|
780 |
+
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
|
781 |
+
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
|
782 |
+
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
|
783 |
+
could be ([128,64,256], [64,32,128]).
|
784 |
+
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
|
785 |
+
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
|
786 |
+
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
|
787 |
+
|
788 |
+
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
|
789 |
+
To maintain the same spatial sizes, the output image will be cropped to the original input size.
|
790 |
+
|
791 |
+
Args:
|
792 |
+
inputs: input image to be processed (assuming NCHW[D])
|
793 |
+
roi_size: the spatial window size for inferences.
|
794 |
+
When its components have None or non-positives, the corresponding inputs dimension will be used.
|
795 |
+
if the components of the `roi_size` are non-positive values, the transform will use the
|
796 |
+
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
|
797 |
+
to `(32, 64)` if the second spatial dimension size of img is `64`.
|
798 |
+
sw_batch_size: the batch size to run window slices.
|
799 |
+
predictor: given input tensor ``patch_data`` in shape NCHW[D],
|
800 |
+
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
|
801 |
+
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
|
802 |
+
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
|
803 |
+
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
|
804 |
+
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
|
805 |
+
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
|
806 |
+
to ensure the scaled output ROI sizes are still integers.
|
807 |
+
If the `predictor`'s input and output spatial sizes are different,
|
808 |
+
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
|
809 |
+
overlap: Amount of overlap between scans.
|
810 |
+
mode: {``"constant"``, ``"gaussian"``}
|
811 |
+
How to blend output of overlapping windows. Defaults to ``"constant"``.
|
812 |
+
|
813 |
+
- ``"constant``": gives equal weight to all predictions.
|
814 |
+
- ``"gaussian``": gives less weight to predictions on edges of windows.
|
815 |
+
|
816 |
+
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
|
817 |
+
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
|
818 |
+
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
|
819 |
+
spatial dimensions.
|
820 |
+
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
|
821 |
+
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
|
822 |
+
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
|
823 |
+
cval: fill value for 'constant' padding mode. Default: 0
|
824 |
+
sw_device: device for the window data.
|
825 |
+
By default the device (and accordingly the memory) of the `inputs` is used.
|
826 |
+
Normally `sw_device` should be consistent with the device where `predictor` is defined.
|
827 |
+
device: device for the stitched output prediction.
|
828 |
+
By default the device (and accordingly the memory) of the `inputs` is used. If for example
|
829 |
+
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
|
830 |
+
`inputs` and `roi_size`. Output is on the `device`.
|
831 |
+
progress: whether to print a `tqdm` progress bar.
|
832 |
+
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
|
833 |
+
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
|
834 |
+
args: optional args to be passed to ``predictor``.
|
835 |
+
kwargs: optional keyword args to be passed to ``predictor``.
|
836 |
+
|
837 |
+
Note:
|
838 |
+
- input must be channel-first and have a batch dim, supports N-D sliding window.
|
839 |
+
|
840 |
+
"""
|
841 |
+
print('sliding window inference for ROI')
|
842 |
+
text = kwargs['text']
|
843 |
+
use_box = kwargs['use_box']
|
844 |
+
use_point = kwargs['use_point']
|
845 |
+
assert not (use_box and use_point)
|
846 |
+
compute_dtype = inputs.dtype
|
847 |
+
num_spatial_dims = len(inputs.shape) - 2
|
848 |
+
if overlap < 0 or overlap >= 1:
|
849 |
+
raise ValueError("overlap must be >= 0 and < 1.")
|
850 |
+
|
851 |
+
# determine image spatial size and batch size
|
852 |
+
# Note: all input images must have the same image size and batch size
|
853 |
+
batch_size, _, *image_size_ = inputs.shape
|
854 |
+
|
855 |
+
if device is None:
|
856 |
+
device = inputs.device
|
857 |
+
if sw_device is None:
|
858 |
+
sw_device = inputs.device
|
859 |
+
|
860 |
+
roi_size = fall_back_tuple(roi_size, image_size_)
|
861 |
+
# in case that image size is smaller than roi size
|
862 |
+
image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
|
863 |
+
pad_size = []
|
864 |
+
for k in range(len(inputs.shape) - 1, 1, -1):
|
865 |
+
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
|
866 |
+
half = diff // 2
|
867 |
+
pad_size.extend([half, diff - half])
|
868 |
+
inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
|
869 |
+
#############
|
870 |
+
if use_point or use_box:
|
871 |
+
binary_prompt_map, global_preds = prompt_reflection
|
872 |
+
global_preds = F.pad(global_preds, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode).value, value=cval)
|
873 |
+
#############
|
874 |
+
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
|
875 |
+
|
876 |
+
# Store all slices in list
|
877 |
+
slices = dense_patch_slices(image_size, roi_size, scan_interval)
|
878 |
+
num_win = len(slices) # number of windows per image
|
879 |
+
total_slices = num_win * batch_size # total number of windows
|
880 |
+
|
881 |
+
# Create window-level importance map
|
882 |
+
valid_patch_size = get_valid_patch_size(image_size, roi_size)
|
883 |
+
if valid_patch_size == roi_size and (roi_weight_map is not None):
|
884 |
+
importance_map = roi_weight_map
|
885 |
+
else:
|
886 |
+
try:
|
887 |
+
importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
|
888 |
+
except BaseException as e:
|
889 |
+
raise RuntimeError(
|
890 |
+
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
|
891 |
+
) from e
|
892 |
+
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
|
893 |
+
# handle non-positive weights
|
894 |
+
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
|
895 |
+
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)
|
896 |
+
|
897 |
+
# Perform predictions
|
898 |
+
dict_key, output_image_list, count_map_list = None, [], []
|
899 |
+
_initialized_ss = -1
|
900 |
+
is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple)
|
901 |
+
|
902 |
+
# for each patch
|
903 |
+
for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
|
904 |
+
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
|
905 |
+
unravel_slice = [
|
906 |
+
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
|
907 |
+
for idx in slice_range
|
908 |
+
]
|
909 |
+
window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(sw_device)
|
910 |
+
#############
|
911 |
+
|
912 |
+
boxes = None
|
913 |
+
points = None
|
914 |
+
if use_point:
|
915 |
+
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
|
916 |
+
point, point_label = select_points(window_binary_prompt_map.squeeze())
|
917 |
+
points = (point.unsqueeze(0).float().to(device), point_label.unsqueeze(0).float().to(device))
|
918 |
+
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
|
919 |
+
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
|
920 |
+
if use_box:
|
921 |
+
if num_win == 1:
|
922 |
+
window_binary_prompt_map = torch.cat([binary_prompt_map[win_slice] for win_slice in unravel_slice]).to(sw_device)
|
923 |
+
boxes = generate_box(window_binary_prompt_map.squeeze()).unsqueeze(0).float().to(device)
|
924 |
+
else:
|
925 |
+
pseudo_label = torch.cat([global_preds[win_slice] for win_slice in unravel_slice]).to(sw_device)
|
926 |
+
boxes = generate_box(pseudo_label.squeeze()).unsqueeze(0).float().to(device)
|
927 |
+
seg_prob_out = predictor(window_data, text, boxes, points) # batched patch segmentation
|
928 |
+
#############
|
929 |
+
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
|
930 |
+
seg_prob_tuple: Tuple[torch.Tensor, ...]
|
931 |
+
if isinstance(seg_prob_out, torch.Tensor):
|
932 |
+
seg_prob_tuple = (seg_prob_out,)
|
933 |
+
elif isinstance(seg_prob_out, Mapping):
|
934 |
+
if dict_key is None:
|
935 |
+
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
|
936 |
+
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
|
937 |
+
is_tensor_output = False
|
938 |
+
else:
|
939 |
+
seg_prob_tuple = ensure_tuple(seg_prob_out)
|
940 |
+
is_tensor_output = False
|
941 |
+
|
942 |
+
# for each output in multi-output list
|
943 |
+
for ss, seg_prob in enumerate(seg_prob_tuple):
|
944 |
+
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
|
945 |
+
|
946 |
+
# compute zoom scale: out_roi_size/in_roi_size
|
947 |
+
zoom_scale = []
|
948 |
+
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
|
949 |
+
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
|
950 |
+
):
|
951 |
+
_scale = out_w_i / float(in_w_i)
|
952 |
+
if not (img_s_i * _scale).is_integer():
|
953 |
+
warnings.warn(
|
954 |
+
f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
|
955 |
+
f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
|
956 |
+
)
|
957 |
+
zoom_scale.append(_scale)
|
958 |
+
|
959 |
+
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
|
960 |
+
# construct multi-resolution outputs
|
961 |
+
output_classes = seg_prob.shape[1]
|
962 |
+
output_shape = [batch_size, output_classes] + [
|
963 |
+
int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
|
964 |
+
]
|
965 |
+
# allocate memory to store the full output and the count for overlapping parts
|
966 |
+
output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device))
|
967 |
+
count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device))
|
968 |
+
_initialized_ss += 1
|
969 |
+
|
970 |
+
# resizing the importance_map
|
971 |
+
resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)
|
972 |
+
|
973 |
+
# store the result in the proper location of the full output. Apply weights from importance map.
|
974 |
+
for idx, original_idx in zip(slice_range, unravel_slice):
|
975 |
+
# zoom roi
|
976 |
+
original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image
|
977 |
+
for axis in range(2, len(original_idx_zoom)):
|
978 |
+
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
|
979 |
+
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
|
980 |
+
if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
|
981 |
+
warnings.warn(
|
982 |
+
f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
|
983 |
+
f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
|
984 |
+
f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
|
985 |
+
f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
|
986 |
+
f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
|
987 |
+
"Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
|
988 |
+
)
|
989 |
+
original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
|
990 |
+
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
|
991 |
+
# store results and weights
|
992 |
+
output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g]
|
993 |
+
count_map_list[ss][original_idx_zoom] += (
|
994 |
+
importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape)
|
995 |
+
)
|
996 |
+
|
997 |
+
# account for any overlapping sections
|
998 |
+
for ss in range(len(output_image_list)):
|
999 |
+
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)
|
1000 |
+
|
1001 |
+
# remove padding if image_size smaller than roi_size
|
1002 |
+
for ss, output_i in enumerate(output_image_list):
|
1003 |
+
if torch.isnan(output_i).any() or torch.isinf(output_i).any():
|
1004 |
+
warnings.warn("Sliding window inference results contain NaN or Inf.")
|
1005 |
+
|
1006 |
+
zoom_scale = [
|
1007 |
+
seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
|
1008 |
+
]
|
1009 |
+
|
1010 |
+
final_slicing: List[slice] = []
|
1011 |
+
for sp in range(num_spatial_dims):
|
1012 |
+
slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
|
1013 |
+
slice_dim = slice(
|
1014 |
+
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
|
1015 |
+
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
|
1016 |
+
)
|
1017 |
+
final_slicing.insert(0, slice_dim)
|
1018 |
+
while len(final_slicing) < len(output_i.shape):
|
1019 |
+
final_slicing.insert(0, slice(None))
|
1020 |
+
output_image_list[ss] = output_i[final_slicing]
|
1021 |
+
|
1022 |
+
if dict_key is not None: # if output of predictor is a dict
|
1023 |
+
final_output = dict(zip(dict_key, output_image_list))
|
1024 |
+
else:
|
1025 |
+
final_output = tuple(output_image_list) # type: ignore
|
1026 |
+
return final_output[0] if is_tensor_output else final_output # type: ignore
|
1027 |
+
|
1028 |
+
|
1029 |
+
def _get_scan_interval(
|
1030 |
+
image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
|
1031 |
+
) -> Tuple[int, ...]:
|
1032 |
+
"""
|
1033 |
+
Compute scan interval according to the image size, roi size and overlap.
|
1034 |
+
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
|
1035 |
+
use 1 instead to make sure sliding window works.
|
1036 |
+
|
1037 |
+
"""
|
1038 |
+
if len(image_size) != num_spatial_dims:
|
1039 |
+
raise ValueError("image coord different from spatial dims.")
|
1040 |
+
if len(roi_size) != num_spatial_dims:
|
1041 |
+
raise ValueError("roi coord different from spatial dims.")
|
1042 |
+
|
1043 |
+
scan_interval = []
|
1044 |
+
for i in range(num_spatial_dims):
|
1045 |
+
if roi_size[i] == image_size[i]:
|
1046 |
+
scan_interval.append(int(roi_size[i]))
|
1047 |
+
else:
|
1048 |
+
interval = int(roi_size[i] * (1 - overlap))
|
1049 |
+
scan_interval.append(interval if interval > 0 else 1)
|
1050 |
+
return tuple(scan_interval)
|
1051 |
+
|
1052 |
+
# build 3D SAM
|
1053 |
+
import torch
|
1054 |
+
import numpy as np
|
1055 |
+
from monai.networks.nets import ViT
|
1056 |
+
|
1057 |
+
def _build_sam(
|
1058 |
+
image_encoder_type,
|
1059 |
+
embed_dim,
|
1060 |
+
patch_size,
|
1061 |
+
checkpoint,
|
1062 |
+
image_size,
|
1063 |
+
):
|
1064 |
+
mlp_dim = 3072
|
1065 |
+
num_layers = 12
|
1066 |
+
num_heads = 12
|
1067 |
+
pos_embed = 'perceptron'
|
1068 |
+
dropout_rate = 0.0
|
1069 |
+
|
1070 |
+
image_encoder=ViT(
|
1071 |
+
in_channels=1,
|
1072 |
+
img_size=image_size,
|
1073 |
+
patch_size=patch_size,
|
1074 |
+
hidden_size=embed_dim,
|
1075 |
+
mlp_dim=mlp_dim,
|
1076 |
+
num_layers=num_layers,
|
1077 |
+
num_heads=num_heads,
|
1078 |
+
pos_embed=pos_embed,
|
1079 |
+
classification=False,
|
1080 |
+
dropout_rate=dropout_rate,
|
1081 |
+
)
|
1082 |
+
image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
|
1083 |
+
|
1084 |
+
if checkpoint is not None:
|
1085 |
+
with open(checkpoint, "rb") as f:
|
1086 |
+
state_dict = torch.load(f, map_location='cpu')['state_dict']
|
1087 |
+
encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
|
1088 |
+
image_encoder.load_state_dict(encoder_dict)
|
1089 |
+
print(f'===> image_encoder.load_param: {checkpoint}')
|
1090 |
+
sam = Sam(
|
1091 |
+
image_encoder=image_encoder,
|
1092 |
+
prompt_encoder=PromptEncoder(
|
1093 |
+
embed_dim=embed_dim,
|
1094 |
+
image_embedding_size=image_embedding_size,
|
1095 |
+
input_image_size=image_size,
|
1096 |
+
mask_in_chans=16,
|
1097 |
+
),
|
1098 |
+
mask_decoder=MaskDecoder(
|
1099 |
+
image_encoder_type=image_encoder_type,
|
1100 |
+
num_multimask_outputs=3,
|
1101 |
+
transformer=TwoWayTransformer(
|
1102 |
+
depth=2,
|
1103 |
+
embedding_dim=embed_dim,
|
1104 |
+
mlp_dim=2048,
|
1105 |
+
num_heads=8,
|
1106 |
+
),
|
1107 |
+
transformer_dim=embed_dim,
|
1108 |
+
iou_head_depth=3,
|
1109 |
+
iou_head_hidden_dim=256,
|
1110 |
+
image_size=np.array(image_size),
|
1111 |
+
patch_size=np.array(patch_size),
|
1112 |
+
),
|
1113 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
1114 |
+
pixel_std=[58.395, 57.12, 57.375],
|
1115 |
+
)
|
1116 |
+
sam.eval()
|
1117 |
+
return sam
|
1118 |
+
|
1119 |
+
# mask decoder
|
1120 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
1121 |
+
# All rights reserved.
|
1122 |
+
|
1123 |
+
# This source code is licensed under the license found in the
|
1124 |
+
# LICENSE file in the root directory of this source tree.
|
1125 |
+
|
1126 |
+
import torch
|
1127 |
+
from torch import nn
|
1128 |
+
from torch.nn import functional as F
|
1129 |
+
|
1130 |
+
from typing import List, Tuple, Type, Optional
|
1131 |
+
|
1132 |
+
class MaskDecoder(nn.Module):
|
1133 |
+
def __init__(
|
1134 |
+
self,
|
1135 |
+
*,
|
1136 |
+
image_encoder_type: str,
|
1137 |
+
transformer_dim: int,
|
1138 |
+
transformer: nn.Module,
|
1139 |
+
num_multimask_outputs: int = 3,
|
1140 |
+
activation: Type[nn.Module] = nn.GELU,
|
1141 |
+
iou_head_depth: int = 3,
|
1142 |
+
iou_head_hidden_dim: int = 256,
|
1143 |
+
image_size,
|
1144 |
+
patch_size,
|
1145 |
+
) -> None:
|
1146 |
+
"""
|
1147 |
+
Predicts masks given an image and prompt embeddings, using a
|
1148 |
+
transformer architecture.
|
1149 |
+
|
1150 |
+
Arguments:
|
1151 |
+
transformer_dim (int): the channel dimension of the transformer
|
1152 |
+
transformer (nn.Module): the transformer used to predict masks
|
1153 |
+
num_multimask_outputs (int): the number of masks to predict
|
1154 |
+
when disambiguating masks
|
1155 |
+
activation (nn.Module): the type of activation to use when
|
1156 |
+
upscaling masks
|
1157 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
1158 |
+
mask quality
|
1159 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
1160 |
+
used to predict mask quality
|
1161 |
+
"""
|
1162 |
+
super().__init__()
|
1163 |
+
self.transformer_dim = transformer_dim
|
1164 |
+
self.transformer = transformer
|
1165 |
+
|
1166 |
+
self.num_multimask_outputs = num_multimask_outputs
|
1167 |
+
|
1168 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
1169 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
1170 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
1171 |
+
|
1172 |
+
if image_encoder_type == 'swin_vit':
|
1173 |
+
self.feat_shape = image_size/patch_size
|
1174 |
+
self.output_upscaling = nn.Sequential(
|
1175 |
+
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
1176 |
+
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # swin
|
1177 |
+
activation(),
|
1178 |
+
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin
|
1179 |
+
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit
|
1180 |
+
activation(),
|
1181 |
+
)
|
1182 |
+
else:
|
1183 |
+
self.feat_shape = image_size/patch_size * 2
|
1184 |
+
self.output_upscaling = nn.Sequential(
|
1185 |
+
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
1186 |
+
nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # vit
|
1187 |
+
activation(),
|
1188 |
+
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
1189 |
+
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
|
1190 |
+
activation(),
|
1191 |
+
)
|
1192 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
1193 |
+
[
|
1194 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
1195 |
+
for i in range(self.num_mask_tokens)
|
1196 |
+
]
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
self.iou_prediction_head = MLP(
|
1200 |
+
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
self.txt_align_upscaled_embedding = nn.Linear(768, 96)
|
1204 |
+
|
1205 |
+
def forward(
|
1206 |
+
self,
|
1207 |
+
image_embeddings: torch.Tensor,
|
1208 |
+
text_embedding: Optional[torch.Tensor],
|
1209 |
+
image_pe: torch.Tensor,
|
1210 |
+
sparse_prompt_embeddings: torch.Tensor,
|
1211 |
+
dense_prompt_embeddings: torch.Tensor,
|
1212 |
+
multimask_output: bool,
|
1213 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1214 |
+
"""
|
1215 |
+
Predict masks given image and prompt embeddings.
|
1216 |
+
|
1217 |
+
Returns:
|
1218 |
+
torch.Tensor: batched predicted masks
|
1219 |
+
"""
|
1220 |
+
# print('--------------decoder here--------------')
|
1221 |
+
masks, iou_pred = self.predict_masks(
|
1222 |
+
image_embeddings=image_embeddings,
|
1223 |
+
text_embedding=text_embedding,
|
1224 |
+
image_pe=image_pe,
|
1225 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
1226 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
# Select the correct mask or masks for output
|
1230 |
+
if multimask_output:
|
1231 |
+
mask_slice = slice(1, None)
|
1232 |
+
else:
|
1233 |
+
mask_slice = slice(0, 1)
|
1234 |
+
masks = masks[:, mask_slice, :, :, :]
|
1235 |
+
iou_pred = iou_pred[:, mask_slice]
|
1236 |
+
|
1237 |
+
# Prepare output
|
1238 |
+
return masks, iou_pred
|
1239 |
+
|
1240 |
+
def predict_masks(
|
1241 |
+
self,
|
1242 |
+
image_embeddings: torch.Tensor,
|
1243 |
+
text_embedding: torch.Tensor,
|
1244 |
+
image_pe: torch.Tensor,
|
1245 |
+
sparse_prompt_embeddings: torch.Tensor,
|
1246 |
+
dense_prompt_embeddings: torch.Tensor,
|
1247 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1248 |
+
"""Predicts masks. See 'forward' for more details."""
|
1249 |
+
# Concatenate output tokens
|
1250 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
1251 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
1252 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
1253 |
+
# Expand per-image data in batch direction to be per-mask
|
1254 |
+
if image_embeddings.shape[0] != tokens.shape[0]:
|
1255 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
1256 |
+
else:
|
1257 |
+
src = image_embeddings
|
1258 |
+
src = src + dense_prompt_embeddings
|
1259 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
1260 |
+
b, c, h, w, d = src.shape
|
1261 |
+
|
1262 |
+
# Run the transformer
|
1263 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
1264 |
+
iou_token_out = hs[:, 0, :]
|
1265 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
1266 |
+
|
1267 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
1268 |
+
src = src.transpose(1, 2).view(b, c, h, w, d)
|
1269 |
+
upscaled_embedding = self.output_upscaling(src)
|
1270 |
+
hyper_in_list: List[torch.Tensor] = []
|
1271 |
+
for i in range(self.num_mask_tokens):
|
1272 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
1273 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
1274 |
+
b, c, h, w, d = upscaled_embedding.shape
|
1275 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
|
1276 |
+
|
1277 |
+
if text_embedding is not None:
|
1278 |
+
text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
|
1279 |
+
upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
|
1280 |
+
sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
|
1281 |
+
sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
|
1282 |
+
masks = masks + sim
|
1283 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
1284 |
+
|
1285 |
+
return masks, iou_pred
|
1286 |
+
|
1287 |
+
# Lightly adapted from
|
1288 |
+
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
1289 |
+
class MLP(nn.Module):
|
1290 |
+
def __init__(
|
1291 |
+
self,
|
1292 |
+
input_dim: int,
|
1293 |
+
hidden_dim: int,
|
1294 |
+
output_dim: int,
|
1295 |
+
num_layers: int,
|
1296 |
+
sigmoid_output: bool = False,
|
1297 |
+
) -> None:
|
1298 |
+
super().__init__()
|
1299 |
+
self.num_layers = num_layers
|
1300 |
+
h = [hidden_dim] * (num_layers - 1)
|
1301 |
+
self.layers = nn.ModuleList(
|
1302 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
1303 |
+
)
|
1304 |
+
self.sigmoid_output = sigmoid_output
|
1305 |
+
|
1306 |
+
def forward(self, x):
|
1307 |
+
for i, layer in enumerate(self.layers):
|
1308 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
1309 |
+
if self.sigmoid_output:
|
1310 |
+
x = F.sigmoid(x)
|
1311 |
+
return x
|
1312 |
+
|
1313 |
+
# prompt encoder
|
1314 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
1315 |
+
# All rights reserved.
|
1316 |
+
|
1317 |
+
# This source code is licensed under the license found in the
|
1318 |
+
# LICENSE file in the root directory of this source tree.
|
1319 |
+
|
1320 |
+
import numpy as np
|
1321 |
+
import torch
|
1322 |
+
from torch import nn
|
1323 |
+
|
1324 |
+
from typing import Any, Optional, Tuple, Type
|
1325 |
+
|
1326 |
+
class PromptEncoder(nn.Module):
|
1327 |
+
def __init__(
|
1328 |
+
self,
|
1329 |
+
embed_dim: int,
|
1330 |
+
image_embedding_size: Tuple[int, int, int],
|
1331 |
+
input_image_size: Tuple[int, int, int],
|
1332 |
+
mask_in_chans: int,
|
1333 |
+
activation: Type[nn.Module] = nn.GELU,
|
1334 |
+
) -> None:
|
1335 |
+
"""
|
1336 |
+
Encodes prompts for input to SAM's mask decoder.
|
1337 |
+
|
1338 |
+
Arguments:
|
1339 |
+
embed_dim (int): The prompts' embedding dimension
|
1340 |
+
image_embedding_size (tuple(int, int)): The spatial size of the
|
1341 |
+
image embedding, as (H, W).
|
1342 |
+
input_image_size (int): The padded size of the image as input
|
1343 |
+
to the image encoder, as (H, W).
|
1344 |
+
mask_in_chans (int): The number of hidden channels used for
|
1345 |
+
encoding input masks.
|
1346 |
+
activation (nn.Module): The activation to use when encoding
|
1347 |
+
input masks.
|
1348 |
+
"""
|
1349 |
+
super().__init__()
|
1350 |
+
self.embed_dim = embed_dim
|
1351 |
+
self.input_image_size = input_image_size
|
1352 |
+
self.image_embedding_size = image_embedding_size
|
1353 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
1354 |
+
|
1355 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
1356 |
+
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
1357 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
1358 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
1359 |
+
|
1360 |
+
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
|
1361 |
+
self.mask_downscaling = nn.Sequential(
|
1362 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
1363 |
+
LayerNorm2d(mask_in_chans // 4),
|
1364 |
+
activation(),
|
1365 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
1366 |
+
LayerNorm2d(mask_in_chans),
|
1367 |
+
activation(),
|
1368 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
1369 |
+
)
|
1370 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
1371 |
+
|
1372 |
+
def get_dense_pe(self) -> torch.Tensor:
|
1373 |
+
"""
|
1374 |
+
Returns the positional encoding used to encode point prompts,
|
1375 |
+
applied to a dense set of points the shape of the image encoding.
|
1376 |
+
|
1377 |
+
Returns:
|
1378 |
+
torch.Tensor: Positional encoding with shape
|
1379 |
+
1x(embed_dim)x(embedding_h)x(embedding_w)
|
1380 |
+
"""
|
1381 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
1382 |
+
|
1383 |
+
def _embed_points(
|
1384 |
+
self,
|
1385 |
+
points: torch.Tensor,
|
1386 |
+
labels: torch.Tensor,
|
1387 |
+
pad: bool,
|
1388 |
+
) -> torch.Tensor:
|
1389 |
+
"""Embeds point prompts."""
|
1390 |
+
points = points + 0.5 # Shift to center of pixel
|
1391 |
+
if pad:
|
1392 |
+
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
|
1393 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
1394 |
+
points = torch.cat([points, padding_point], dim=1)
|
1395 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
1396 |
+
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
1397 |
+
point_embedding[labels == -1] = 0.0
|
1398 |
+
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
1399 |
+
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
1400 |
+
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
1401 |
+
return point_embedding
|
1402 |
+
|
1403 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
1404 |
+
"""Embeds box prompts."""
|
1405 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
1406 |
+
coords = boxes.reshape(-1, 2, 3)
|
1407 |
+
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
1408 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
1409 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
1410 |
+
return corner_embedding
|
1411 |
+
|
1412 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
1413 |
+
"""Embeds mask inputs."""
|
1414 |
+
mask_embedding = self.mask_downscaling(masks)
|
1415 |
+
return mask_embedding
|
1416 |
+
|
1417 |
+
def _get_batch_size(
|
1418 |
+
self,
|
1419 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
1420 |
+
boxes: Optional[torch.Tensor],
|
1421 |
+
masks: Optional[torch.Tensor],
|
1422 |
+
text_embedding: Optional[torch.Tensor],
|
1423 |
+
) -> int:
|
1424 |
+
"""
|
1425 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
1426 |
+
"""
|
1427 |
+
if points is not None:
|
1428 |
+
return points[0].shape[0]
|
1429 |
+
elif boxes is not None:
|
1430 |
+
return boxes.shape[0]
|
1431 |
+
elif masks is not None:
|
1432 |
+
return masks.shape[0]
|
1433 |
+
elif text_embedding is not None:
|
1434 |
+
return text_embedding.shape[0]
|
1435 |
+
else:
|
1436 |
+
return 1
|
1437 |
+
|
1438 |
+
def _get_device(self) -> torch.device:
|
1439 |
+
return self.point_embeddings[0].weight.device
|
1440 |
+
|
1441 |
+
def forward(
|
1442 |
+
self,
|
1443 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
1444 |
+
boxes: Optional[torch.Tensor],
|
1445 |
+
masks: Optional[torch.Tensor],
|
1446 |
+
text_embedding: Optional[torch.Tensor],
|
1447 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1448 |
+
|
1449 |
+
bs = self._get_batch_size(points, boxes, masks, text_embedding)
|
1450 |
+
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
1451 |
+
|
1452 |
+
if points is not None:
|
1453 |
+
coords, labels = points
|
1454 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
1455 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
1456 |
+
|
1457 |
+
if boxes is not None:
|
1458 |
+
box_embeddings = self._embed_boxes(boxes)
|
1459 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
1460 |
+
|
1461 |
+
if text_embedding is not None:
|
1462 |
+
sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
|
1463 |
+
|
1464 |
+
if masks is not None:
|
1465 |
+
dense_embeddings = self._embed_masks(masks)
|
1466 |
+
else:
|
1467 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
|
1468 |
+
bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]), int(self.image_embedding_size[2])
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
return sparse_embeddings, dense_embeddings
|
1472 |
+
|
1473 |
+
|
1474 |
+
class PositionEmbeddingRandom(nn.Module):
|
1475 |
+
"""
|
1476 |
+
Positional encoding using random spatial frequencies.
|
1477 |
+
"""
|
1478 |
+
|
1479 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
1480 |
+
super().__init__()
|
1481 |
+
if scale is None or scale <= 0.0:
|
1482 |
+
scale = 1.0
|
1483 |
+
self.register_buffer(
|
1484 |
+
"positional_encoding_gaussian_matrix",
|
1485 |
+
scale * torch.randn((3, num_pos_feats)),
|
1486 |
+
)
|
1487 |
+
|
1488 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
1489 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
1490 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
1491 |
+
coords = 2 * coords - 1
|
1492 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
1493 |
+
coords = 2 * np.pi * coords
|
1494 |
+
# outputs d_1 x ... x d_n x C shape
|
1495 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
1496 |
+
|
1497 |
+
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
|
1498 |
+
"""Generate positional encoding for a grid of the specified size."""
|
1499 |
+
h, w, d = size
|
1500 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
1501 |
+
grid = torch.ones((h, w, d), device=device, dtype=torch.float32)
|
1502 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
1503 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
1504 |
+
z_embed = grid.cumsum(dim=2) - 0.5
|
1505 |
+
y_embed = y_embed / h
|
1506 |
+
x_embed = x_embed / w
|
1507 |
+
z_embed = z_embed / d
|
1508 |
+
|
1509 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
|
1510 |
+
return pe.permute(3, 0, 1, 2) # C x H x W x D
|
1511 |
+
|
1512 |
+
def forward_with_coords(
|
1513 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
1514 |
+
) -> torch.Tensor:
|
1515 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
1516 |
+
coords = coords_input.clone()
|
1517 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
1518 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
1519 |
+
coords[:, :, 2] = coords[:, :, 2] / image_size[2]
|
1520 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
1521 |
+
|
1522 |
+
# two way transformer
|
1523 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
1524 |
+
# All rights reserved.
|
1525 |
+
|
1526 |
+
# This source code is licensed under the license found in the
|
1527 |
+
# LICENSE file in the root directory of this source tree.
|
1528 |
+
|
1529 |
+
import torch
|
1530 |
+
from torch import Tensor, nn
|
1531 |
+
|
1532 |
+
import math
|
1533 |
+
from typing import Tuple, Type
|
1534 |
+
|
1535 |
+
class TwoWayTransformer(nn.Module):
|
1536 |
+
def __init__(
|
1537 |
+
self,
|
1538 |
+
depth: int,
|
1539 |
+
embedding_dim: int,
|
1540 |
+
num_heads: int,
|
1541 |
+
mlp_dim: int,
|
1542 |
+
activation: Type[nn.Module] = nn.ReLU,
|
1543 |
+
attention_downsample_rate: int = 2,
|
1544 |
+
) -> None:
|
1545 |
+
"""
|
1546 |
+
A transformer decoder that attends to an input image using
|
1547 |
+
queries whose positional embedding is supplied.
|
1548 |
+
|
1549 |
+
Args:
|
1550 |
+
depth (int): number of layers in the transformer
|
1551 |
+
embedding_dim (int): the channel dimension for the input embeddings
|
1552 |
+
num_heads (int): the number of heads for multihead attention. Must
|
1553 |
+
divide embedding_dim
|
1554 |
+
mlp_dim (int): the channel dimension internal to the MLP block
|
1555 |
+
activation (nn.Module): the activation to use in the MLP block
|
1556 |
+
"""
|
1557 |
+
super().__init__()
|
1558 |
+
self.depth = depth
|
1559 |
+
self.embedding_dim = embedding_dim
|
1560 |
+
self.num_heads = num_heads
|
1561 |
+
self.mlp_dim = mlp_dim
|
1562 |
+
self.layers = nn.ModuleList()
|
1563 |
+
|
1564 |
+
for i in range(depth):
|
1565 |
+
self.layers.append(
|
1566 |
+
TwoWayAttentionBlock(
|
1567 |
+
embedding_dim=embedding_dim,
|
1568 |
+
num_heads=num_heads,
|
1569 |
+
mlp_dim=mlp_dim,
|
1570 |
+
activation=activation,
|
1571 |
+
attention_downsample_rate=attention_downsample_rate,
|
1572 |
+
skip_first_layer_pe=(i == 0),
|
1573 |
+
)
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
self.final_attn_token_to_image = Attention(
|
1577 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
1578 |
+
)
|
1579 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
1580 |
+
|
1581 |
+
def forward(
|
1582 |
+
self,
|
1583 |
+
image_embedding: Tensor,
|
1584 |
+
image_pe: Tensor,
|
1585 |
+
point_embedding: Tensor,
|
1586 |
+
) -> Tuple[Tensor, Tensor]:
|
1587 |
+
"""
|
1588 |
+
Args:
|
1589 |
+
image_embedding (torch.Tensor): image to attend to. Should be shape
|
1590 |
+
B x embedding_dim x h x w for any h and w.
|
1591 |
+
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
1592 |
+
have the same shape as image_embedding.
|
1593 |
+
point_embedding (torch.Tensor): the embedding to add to the query points.
|
1594 |
+
Must have shape B x N_points x embedding_dim for any N_points.
|
1595 |
+
|
1596 |
+
Returns:
|
1597 |
+
torch.Tensor: the processed point_embedding
|
1598 |
+
torch.Tensor: the processed image_embedding
|
1599 |
+
"""
|
1600 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
1601 |
+
bs, c, h, w, d = image_embedding.shape
|
1602 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
1603 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
1604 |
+
|
1605 |
+
# Prepare queries
|
1606 |
+
queries = point_embedding
|
1607 |
+
keys = image_embedding
|
1608 |
+
|
1609 |
+
# Apply transformer blocks and final layernorm
|
1610 |
+
for layer in self.layers:
|
1611 |
+
queries, keys = layer(
|
1612 |
+
queries=queries,
|
1613 |
+
keys=keys,
|
1614 |
+
query_pe=point_embedding,
|
1615 |
+
key_pe=image_pe,
|
1616 |
+
)
|
1617 |
+
|
1618 |
+
# Apply the final attention layer from the points to the image
|
1619 |
+
q = queries + point_embedding
|
1620 |
+
k = keys + image_pe
|
1621 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
1622 |
+
queries = queries + attn_out
|
1623 |
+
queries = self.norm_final_attn(queries)
|
1624 |
+
|
1625 |
+
return queries, keys
|
1626 |
+
|
1627 |
+
|
1628 |
+
class TwoWayAttentionBlock(nn.Module):
|
1629 |
+
def __init__(
|
1630 |
+
self,
|
1631 |
+
embedding_dim: int,
|
1632 |
+
num_heads: int,
|
1633 |
+
mlp_dim: int = 2048,
|
1634 |
+
activation: Type[nn.Module] = nn.ReLU,
|
1635 |
+
attention_downsample_rate: int = 2,
|
1636 |
+
skip_first_layer_pe: bool = False,
|
1637 |
+
) -> None:
|
1638 |
+
"""
|
1639 |
+
A transformer block with four layers: (1) self-attention of sparse
|
1640 |
+
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
1641 |
+
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
1642 |
+
inputs.
|
1643 |
+
|
1644 |
+
Arguments:
|
1645 |
+
embedding_dim (int): the channel dimension of the embeddings
|
1646 |
+
num_heads (int): the number of heads in the attention layers
|
1647 |
+
mlp_dim (int): the hidden dimension of the mlp block
|
1648 |
+
activation (nn.Module): the activation of the mlp block
|
1649 |
+
skip_first_layer_pe (bool): skip the PE on the first layer
|
1650 |
+
"""
|
1651 |
+
super().__init__()
|
1652 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
1653 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
1654 |
+
|
1655 |
+
self.cross_attn_token_to_image = Attention(
|
1656 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
1657 |
+
)
|
1658 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
1659 |
+
|
1660 |
+
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
1661 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
1662 |
+
|
1663 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
1664 |
+
self.cross_attn_image_to_token = Attention(
|
1665 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
1669 |
+
|
1670 |
+
def forward(
|
1671 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
1672 |
+
) -> Tuple[Tensor, Tensor]:
|
1673 |
+
# Self attention block
|
1674 |
+
if self.skip_first_layer_pe:
|
1675 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
1676 |
+
else:
|
1677 |
+
q = queries + query_pe
|
1678 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
1679 |
+
queries = queries + attn_out
|
1680 |
+
queries = self.norm1(queries)
|
1681 |
+
|
1682 |
+
# Cross attention block, tokens attending to image embedding
|
1683 |
+
q = queries + query_pe
|
1684 |
+
k = keys + key_pe
|
1685 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
1686 |
+
queries = queries + attn_out
|
1687 |
+
queries = self.norm2(queries)
|
1688 |
+
|
1689 |
+
# MLP block
|
1690 |
+
mlp_out = self.mlp(queries)
|
1691 |
+
queries = queries + mlp_out
|
1692 |
+
queries = self.norm3(queries)
|
1693 |
+
|
1694 |
+
# Cross attention block, image embedding attending to tokens
|
1695 |
+
q = queries + query_pe
|
1696 |
+
k = keys + key_pe
|
1697 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
1698 |
+
keys = keys + attn_out
|
1699 |
+
keys = self.norm4(keys)
|
1700 |
+
|
1701 |
+
return queries, keys
|
1702 |
+
|
1703 |
+
|
1704 |
+
class Attention(nn.Module):
|
1705 |
+
"""
|
1706 |
+
An attention layer that allows for downscaling the size of the embedding
|
1707 |
+
after projection to queries, keys, and values.
|
1708 |
+
"""
|
1709 |
+
|
1710 |
+
def __init__(
|
1711 |
+
self,
|
1712 |
+
embedding_dim: int,
|
1713 |
+
num_heads: int,
|
1714 |
+
downsample_rate: int = 1,
|
1715 |
+
) -> None:
|
1716 |
+
super().__init__()
|
1717 |
+
self.embedding_dim = embedding_dim
|
1718 |
+
self.internal_dim = embedding_dim // downsample_rate
|
1719 |
+
self.num_heads = num_heads
|
1720 |
+
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
1721 |
+
|
1722 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
1723 |
+
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
1724 |
+
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
1725 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
1726 |
+
|
1727 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
1728 |
+
b, n, c = x.shape
|
1729 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
1730 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
1731 |
+
|
1732 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
1733 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
1734 |
+
x = x.transpose(1, 2)
|
1735 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
1736 |
+
|
1737 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
1738 |
+
# Input projections
|
1739 |
+
q = self.q_proj(q)
|
1740 |
+
k = self.k_proj(k)
|
1741 |
+
v = self.v_proj(v)
|
1742 |
+
|
1743 |
+
# Separate into heads
|
1744 |
+
q = self._separate_heads(q, self.num_heads)
|
1745 |
+
k = self._separate_heads(k, self.num_heads)
|
1746 |
+
v = self._separate_heads(v, self.num_heads)
|
1747 |
+
|
1748 |
+
# Attention
|
1749 |
+
_, _, _, c_per_head = q.shape
|
1750 |
+
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
1751 |
+
attn = attn / math.sqrt(c_per_head)
|
1752 |
+
attn = torch.softmax(attn, dim=-1)
|
1753 |
+
|
1754 |
+
# Get output
|
1755 |
+
out = attn @ v
|
1756 |
+
out = self._recombine_heads(out)
|
1757 |
+
out = self.out_proj(out)
|
1758 |
+
|
1759 |
+
return out
|
1760 |
+
|
1761 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
1762 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
1763 |
+
class LayerNorm2d(nn.Module):
|
1764 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
1765 |
+
super().__init__()
|
1766 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
1767 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
1768 |
+
self.eps = eps
|
1769 |
+
|
1770 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1771 |
+
u = x.mean(1, keepdim=True)
|
1772 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
1773 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
1774 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
1775 |
+
return x
|
1776 |
+
|
1777 |
+
class MLPBlock(nn.Module):
|
1778 |
+
def __init__(
|
1779 |
+
self,
|
1780 |
+
embedding_dim: int,
|
1781 |
+
mlp_dim: int,
|
1782 |
+
act: Type[nn.Module] = nn.GELU,
|
1783 |
+
) -> None:
|
1784 |
+
super().__init__()
|
1785 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
1786 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
1787 |
+
self.act = act()
|
1788 |
+
|
1789 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1790 |
+
return self.lin2(self.act(self.lin1(x)))
|
1791 |
+
|
1792 |
+
|
1793 |
+
# sam
|
1794 |
+
class Sam(nn.Module):
|
1795 |
+
mask_threshold: float = 0.0
|
1796 |
+
image_format: str = "RGB"
|
1797 |
+
|
1798 |
+
def __init__(
|
1799 |
+
self,
|
1800 |
+
image_encoder,
|
1801 |
+
prompt_encoder,
|
1802 |
+
mask_decoder,
|
1803 |
+
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
1804 |
+
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
1805 |
+
) -> None:
|
1806 |
+
"""
|
1807 |
+
SAM predicts object masks from an image and input prompts.
|
1808 |
+
|
1809 |
+
Arguments:
|
1810 |
+
image_encoder (ImageEncoderViT): The backbone used to encode the
|
1811 |
+
image into image embeddings that allow for efficient mask prediction.
|
1812 |
+
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
1813 |
+
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
1814 |
+
and encoded prompts.
|
1815 |
+
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
1816 |
+
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
1817 |
+
"""
|
1818 |
+
super().__init__()
|
1819 |
+
self.image_encoder = image_encoder
|
1820 |
+
self.prompt_encoder = prompt_encoder
|
1821 |
+
self.mask_decoder = mask_decoder
|
1822 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
1823 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
1824 |
+
|
1825 |
+
@property
|
1826 |
+
def device(self) -> Any:
|
1827 |
+
return self.pixel_mean.device
|
1828 |
+
|
1829 |
+
@torch.no_grad()
|
1830 |
+
def forward(
|
1831 |
+
self,
|
1832 |
+
batched_input: List[Dict[str, Any]],
|
1833 |
+
multimask_output: bool,
|
1834 |
+
) -> List[Dict[str, torch.Tensor]]:
|
1835 |
+
"""
|
1836 |
+
Predicts masks end-to-end from provided images and prompts.
|
1837 |
+
If prompts are not known in advance, using SamPredictor is
|
1838 |
+
recommended over calling the model directly.
|
1839 |
+
|
1840 |
+
Arguments:
|
1841 |
+
batched_input (list(dict)): A list over input images, each a
|
1842 |
+
dictionary with the following keys. A prompt key can be
|
1843 |
+
excluded if it is not present.
|
1844 |
+
'image': The image as a torch tensor in 3xHxW format,
|
1845 |
+
already transformed for input to the model.
|
1846 |
+
'original_size': (tuple(int, int)) The original size of
|
1847 |
+
the image before transformation, as (H, W).
|
1848 |
+
'point_coords': (torch.Tensor) Batched point prompts for
|
1849 |
+
this image, with shape BxNx2. Already transformed to the
|
1850 |
+
input frame of the model.
|
1851 |
+
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
1852 |
+
with shape BxN.
|
1853 |
+
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
1854 |
+
Already transformed to the input frame of the model.
|
1855 |
+
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
1856 |
+
in the form Bx1xHxW.
|
1857 |
+
multimask_output (bool): Whether the model should predict multiple
|
1858 |
+
disambiguating masks, or return a single mask.
|
1859 |
+
|
1860 |
+
Returns:
|
1861 |
+
(list(dict)): A list over input images, where each element is
|
1862 |
+
as dictionary with the following keys.
|
1863 |
+
'masks': (torch.Tensor) Batched binary mask predictions,
|
1864 |
+
with shape BxCxHxW, where B is the number of input prompts,
|
1865 |
+
C is determined by multimask_output, and (H, W) is the
|
1866 |
+
original size of the image.
|
1867 |
+
'iou_predictions': (torch.Tensor) The model's predictions
|
1868 |
+
of mask quality, in shape BxC.
|
1869 |
+
'low_res_logits': (torch.Tensor) Low resolution logits with
|
1870 |
+
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
1871 |
+
to subsequent iterations of prediction.
|
1872 |
+
"""
|
1873 |
+
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
1874 |
+
image_embeddings = self.image_encoder(input_images)
|
1875 |
+
|
1876 |
+
outputs = []
|
1877 |
+
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
1878 |
+
if "point_coords" in image_record:
|
1879 |
+
points = (image_record["point_coords"], image_record["point_labels"])
|
1880 |
+
else:
|
1881 |
+
points = None
|
1882 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
1883 |
+
points=points,
|
1884 |
+
boxes=image_record.get("boxes", None),
|
1885 |
+
masks=image_record.get("mask_inputs", None),
|
1886 |
+
)
|
1887 |
+
low_res_masks, iou_predictions = self.mask_decoder(
|
1888 |
+
image_embeddings=curr_embedding.unsqueeze(0),
|
1889 |
+
image_pe=self.prompt_encoder.get_dense_pe(),
|
1890 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
1891 |
+
dense_prompt_embeddings=dense_embeddings,
|
1892 |
+
multimask_output=multimask_output,
|
1893 |
+
)
|
1894 |
+
masks = self.postprocess_masks(
|
1895 |
+
low_res_masks,
|
1896 |
+
input_size=image_record["image"].shape[-2:],
|
1897 |
+
original_size=image_record["original_size"],
|
1898 |
+
)
|
1899 |
+
masks = masks > self.mask_threshold
|
1900 |
+
outputs.append(
|
1901 |
+
{
|
1902 |
+
"masks": masks,
|
1903 |
+
"iou_predictions": iou_predictions,
|
1904 |
+
"low_res_logits": low_res_masks,
|
1905 |
+
}
|
1906 |
+
)
|
1907 |
+
return outputs
|
1908 |
+
|
1909 |
+
def postprocess_masks(
|
1910 |
+
self,
|
1911 |
+
masks: torch.Tensor,
|
1912 |
+
input_size: Tuple[int, ...],
|
1913 |
+
original_size: Tuple[int, ...],
|
1914 |
+
) -> torch.Tensor:
|
1915 |
+
"""
|
1916 |
+
Remove padding and upscale masks to the original image size.
|
1917 |
+
|
1918 |
+
Arguments:
|
1919 |
+
masks (torch.Tensor): Batched masks from the mask_decoder,
|
1920 |
+
in BxCxHxW format.
|
1921 |
+
input_size (tuple(int, int)): The size of the image input to the
|
1922 |
+
model, in (H, W) format. Used to remove padding.
|
1923 |
+
original_size (tuple(int, int)): The original size of the image
|
1924 |
+
before resizing for input to the model, in (H, W) format.
|
1925 |
+
|
1926 |
+
Returns:
|
1927 |
+
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
1928 |
+
is given by original_size.
|
1929 |
+
"""
|
1930 |
+
masks = F.interpolate(
|
1931 |
+
masks,
|
1932 |
+
(self.image_encoder.img_size, self.image_encoder.img_size),
|
1933 |
+
mode="bilinear",
|
1934 |
+
align_corners=False,
|
1935 |
+
)
|
1936 |
+
masks = masks[..., : input_size[0], : input_size[1]]
|
1937 |
+
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
1938 |
+
return masks
|
1939 |
+
|
1940 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
1941 |
+
"""Normalize pixel values and pad to a square input."""
|
1942 |
+
# Normalize colors
|
1943 |
+
# TODO
|
1944 |
+
x = (x - self.pixel_mean) / self.pixel_std
|
1945 |
+
|
1946 |
+
# Pad
|
1947 |
+
h, w = x.shape[-2:]
|
1948 |
+
padh = self.image_encoder.img_size - h
|
1949 |
+
padw = self.image_encoder.img_size - w
|
1950 |
+
x = F.pad(x, (0, padw, 0, padh))
|
1951 |
+
return x
|
SegVol_v1.pth → pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:500f2758a8f989339b2b2baf09a819169bc87549795193d3cfe505726ac0b399
|
3 |
+
size 723726667
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "/home/yuxin/BAAI/code_release/segvol_transformers/config/clip", "special_tokens_map_file": "/home/yuxin/BAAI/code_release/segvol_transformers/config/clip/special_tokens_map.json", "tokenizer_class": "CLIPTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|