bge-m3-unsupervised / README.md
Shitao's picture
Update README.md
64754cb verified
|
raw
history blame
No virus
8.86 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity

BGE-M3

In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.

  • Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
  • Multi-Linguality: It can support more than 100 working languages.
  • Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.

Some suggestions for retrieval pipeline in RAG: We recommend to use following pipeline: hybrid retrieval + re-ranking.

  • Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities. A classic example: using both embedding retrieval and the BM25 algorithm. Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval. This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
  • As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model. Utilizing the re-ranking model (e.g., bge-reranker, cohere-reranker) after retrieval can further filter the selected text.

FAQ

1. Introduction for different retrieval methods

  • Dense retrieval: map the text into a single embedding, e.g., DPR, BGE-v1.5
  • Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, unicoil, and splade
  • Multi-vector retrieval: use multiple vectors to represent a text, e.g., ColBERT.

2. How to use BGE-M3 in other projects?

For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE. The only difference is that the BGE-M3 model no longer requires adding instructions to the queries. For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model. Contributions from the community are welcome.

3. How to fine-tune bge-M3 model?

You can follow the common in this example to fine-tune the dense embedding.

Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.

Usage

Install:

git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .

or:

pip install -U FlagEmbedding

Generate Embedding for text

  • Dense Embedding
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

embeddings_1 = model.encode(sentences_1)['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# [[0.6265, 0.3477], [0.3499, 0.678 ]]

You also can use sentence-transformers and huggingface transformers to generate dense embeddings. Refer to baai_general_embedding for details.

  • Sparse Embedding (Lexical Weight)
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)

# you can see the weight for each token:
print(model.convert_id_to_token(output_1['lexical_weights']))
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092}, 
#  {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]


# compute the scores via lexical mathcing
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
print(lexical_scores)
# 0.19554901123046875

print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
# 0.0
  • Multi-Vector (ColBERT)
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) 

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)

print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
# 0.7797
# 0.4620

Compute score for text pairs

Input a list of text pairs, you can get the scores computed by different methods.

from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) 

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
print(model.compute_score(sentence_pairs))
# {
#     'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
#     'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375],
#     'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
#     'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417],
#     'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574]
# }

Evaluation

  • Multilingual (Miracl dataset)

avatar

  • Cross-lingual (MKQA dataset)

avatar

  • Long Document Retrieval

avatar

Training

  • Self-knowledge Distillation: combining multiple outputs from different retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
  • Efficient Batching: Improve the efficiency when fine-tuning on long text. The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
  • MCLS: A simple method to improve the performance on long text without fine-tuning. If you have no enough resource to fine-tuning model with long text, the method is useful.

Refer to our report for more details.

The fine-tuning codes and datasets will be open-sourced in the near future.

Models

We release two versions:

Acknowledgement

Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.

Citation

If you find this repository useful, please consider giving a star :star: and citation