Integrate with Sentence Transformers (+ third parties like LangChain/Haystack/LlamaIndex, etc.)

#1
by tomaarsen HF staff - opened
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 3584,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -2,6 +2,7 @@
2
  tags:
3
  - feature-extraction
4
  - sentence-similarity
 
5
  - transformers
6
  - mteb
7
  license: gemma
@@ -8835,6 +8836,38 @@ print(similarity)
8835
  By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
8836
  You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
8837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8838
 
8839
  ### Using HuggingFace Transformers
8840
  ```python
 
2
  tags:
3
  - feature-extraction
4
  - sentence-similarity
5
+ - sentence-transformers
6
  - transformers
7
  - mteb
8
  license: gemma
 
8836
  By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
8837
  You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
8838
 
8839
+ ### Using Sentence Transformers
8840
+
8841
+ ```python
8842
+ from sentence_transformers import SentenceTransformer
8843
+ import torch
8844
+
8845
+ # Load the model, optionally in float16 precision for faster inference
8846
+ model = SentenceTransformer("BAAI/bge-multilingual-gemma2", model_kwargs={"torch_dtype": torch.float16})
8847
+
8848
+ # Prepare a prompt given an instruction
8849
+ instruction = 'Given a web search query, retrieve relevant passages that answer the query.'
8850
+ prompt = f'<instruct>{instruction}\n<query>'
8851
+ # Prepare queries and documents
8852
+ queries = [
8853
+ 'how much protein should a female eat',
8854
+ 'summit define',
8855
+ ]
8856
+ documents = [
8857
+ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
8858
+ "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
8859
+ ]
8860
+
8861
+ # Compute the query and document embeddings
8862
+ query_embeddings = model.encode(queries, prompt=prompt)
8863
+ document_embeddings = model.encode(documents)
8864
+
8865
+ # Compute the cosine similarity between the query and document embeddings
8866
+ similarities = model.similarity(query_embeddings, document_embeddings)
8867
+ print(similarities)
8868
+ # tensor([[ 0.5591, 0.0164],
8869
+ # [-0.0026, 0.4993]], dtype=torch.float16)
8870
+ ```
8871
 
8872
  ### Using HuggingFace Transformers
8873
  ```python
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "web_search_query": "<instruct>Given a web search query, retrieve relevant passages that answer the query.\n<query>"
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }