|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import inspect |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
ModelOutput, |
|
) |
|
from .gemma_config import CostWiseGemmaConfig |
|
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb |
|
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING |
|
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
@add_start_docstrings( |
|
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", |
|
GEMMA2_START_DOCSTRING, |
|
) |
|
class CostWiseGemma2PreTrainedModel(PreTrainedModel): |
|
config_class = CostWiseGemmaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Gemma2DecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = False |
|
_supports_quantized_cache = False |
|
_supports_static_cache = True |
|
_is_stateful = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
GEMMA2_ATTENTION_CLASSES = { |
|
"eager": Gemma2Attention, |
|
"flash_attention_2": Gemma2FlashAttention2, |
|
"sdpa": Gemma2SdpaAttention, |
|
} |
|
|
|
|
|
_CONFIG_FOR_DOC = "CostWiseGemmaConfig" |
|
|
|
@dataclass |
|
class CostWiseModelOutputWithPast(ModelOutput): |
|
last_hidden_state: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
attention_masks: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
@dataclass |
|
class CostWiseCausalLMOutputWithPast(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
attention_masks: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
def token_compress(compress_ratio, |
|
hidden_states, |
|
attention_mask, |
|
query_lengths, |
|
prompt_lengths): |
|
""" |
|
compress_ratio: int |
|
hidden_states: (b, s, h) |
|
attention_mask: (b, s) |
|
query_lengths: (b) |
|
prompt_lengths: (b) |
|
""" |
|
|
|
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths |
|
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio |
|
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths |
|
max_passage_length = torch.max(passage_lengths) |
|
max_final_lengths = torch.max(final_useful_lengths) |
|
|
|
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths, |
|
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) |
|
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) |
|
|
|
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None] |
|
new_attention_mask[mask_attention_index] = 0 |
|
|
|
|
|
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) |
|
mask_query_index = query_index < query_lengths[:, None] |
|
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index] |
|
|
|
|
|
new_prompt_start_length = query_lengths + retain_passage_lengths |
|
new_prompt_end_length = new_prompt_start_length + prompt_lengths |
|
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) |
|
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None] |
|
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None] |
|
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end |
|
|
|
raw_prompt_start_length = query_lengths + passage_lengths |
|
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths |
|
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None] |
|
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None] |
|
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end |
|
|
|
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index] |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_passage_start_length = query_lengths |
|
new_passage_end_length = new_passage_start_length + retain_passage_lengths |
|
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) |
|
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None] |
|
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None] |
|
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end |
|
|
|
|
|
|
|
psg_start_length = query_lengths |
|
psg_end_length = query_lengths + passage_lengths |
|
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
mask_psg_index_start = psg_index >= psg_start_length[:, None] |
|
mask_psg_index_end = psg_index < psg_end_length[:, None] |
|
mask_psg_index = mask_psg_index_start & mask_psg_index_end |
|
|
|
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1) |
|
passage_hidden_states = torch.zeros((hidden_states.shape[0], |
|
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio, |
|
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) |
|
passage_end_length = passage_lengths |
|
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
mask_passage_index = passage_index < passage_end_length[:, None] |
|
|
|
raw_passage_end_length = query_lengths + passage_lengths |
|
raw_passage_start_length = query_lengths |
|
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None] |
|
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None] |
|
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end |
|
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index] |
|
|
|
passage_weights = torch.zeros((hidden_states.shape[0], |
|
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio) |
|
, dtype=hidden_states.dtype).to(hidden_states.device) |
|
passage_weights[mask_passage_index] = 1 |
|
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio) |
|
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1 |
|
).view(passage_weights.shape[0], -1, 1) |
|
passage_weights = passage_weights.view(passage_weights.shape[0], -1) |
|
|
|
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1) |
|
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio, |
|
passage_hidden_states.shape[-1]) |
|
passage_hidden_states = torch.sum(passage_hidden_states, dim=2) |
|
passage_end_length = retain_passage_lengths |
|
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) |
|
mask_passage_index = passage_index < passage_end_length[:, None] |
|
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index] |
|
|
|
return new_hidden_states, new_attention_mask |
|
|
|
@add_start_docstrings( |
|
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", |
|
GEMMA2_START_DOCSTRING, |
|
) |
|
class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`] |
|
|
|
Args: |
|
config: GemmaConfig |
|
""" |
|
|
|
def __init__(self, config: CostWiseGemmaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
compress_layer: Optional[int] = None, |
|
compress_ratio: Optional[int] = None, |
|
cutoff_layers: Optional[List[int]] = None, |
|
query_lengths: Optional[int] = None, |
|
prompt_lengths: Optional[int] = None, |
|
) -> Union[Tuple, CostWiseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
compress_ratio = None if compress_ratio == 1 else compress_ratio |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
if self.config.layer_wise: |
|
output_hidden_states = True |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
if compress_layer is not None and compress_ratio is not None: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
|
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype) |
|
hidden_states = hidden_states * normalizer |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_attention_masks = () |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and ( |
|
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1]) |
|
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths |
|
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths |
|
if not isinstance(query_lengths, torch.Tensor): |
|
query_lengths = torch.tensor(query_lengths, device=hidden_states.device) |
|
if not isinstance(prompt_lengths, torch.Tensor): |
|
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device) |
|
|
|
if cutoff_layers is None: |
|
max_layer = self.config.num_hidden_layers |
|
cutoff_layers = [max_layer] |
|
if isinstance(cutoff_layers, int): |
|
max_layer = cutoff_layers |
|
cutoff_layers = [cutoff_layers] |
|
else: |
|
max_layer = max(cutoff_layers) |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if self.config.layer_wise: |
|
if idx in cutoff_layers and output_hidden_states: |
|
all_hidden_states += (self.norm(hidden_states),) |
|
all_attention_masks += (attention_mask,) |
|
if idx == max_layer: |
|
break |
|
elif output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0: |
|
if is_padding_left: |
|
raise ValueError('You must use right padding...') |
|
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask, |
|
query_lengths, prompt_lengths) |
|
seq_length = hidden_states.shape[1] |
|
cache_position = torch.arange(0, seq_length, device=hidden_states.device) |
|
position_ids = cache_position.unsqueeze(0) |
|
causal_mask = self._update_causal_mask( |
|
attention_mask, hidden_states, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if not self.config.layer_wise: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
all_attention_masks += (attention_mask,) |
|
else: |
|
if output_hidden_states and self.config.num_hidden_layers == max_layer: |
|
all_hidden_states += (hidden_states,) |
|
all_attention_masks += (attention_mask,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return CostWiseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
attention_masks=all_attention_masks |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if past_key_values is not None: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1] |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
if attention_mask.max() != 0: |
|
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") |
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
class CostWiseHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, input_size, output_size): |
|
super().__init__() |
|
self.linear_head = nn.Linear(input_size, output_size, bias=False) |
|
|
|
def forward(self, **kwargs): |
|
return self.linear_head(**kwargs) |
|
|
|
|
|
class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: CostWiseGemmaConfig): |
|
super().__init__(config) |
|
self.model = CostWiseGemmaModel(config) |
|
self.vocab_size = config.vocab_size |
|
|
|
if not config.layer_wise: |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
else: |
|
self.lm_head = nn.ModuleList( |
|
[CostWiseHead(config.hidden_size, 1) for _ in range( |
|
config.start_layer, config.num_hidden_layers + 1, config.layer_sep |
|
)] |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
compress_layer: Optional[int] = None, |
|
compress_ratio: Optional[int] = None, |
|
cutoff_layers: Optional[List[int]] = None, |
|
query_lengths: Optional[int] = None, |
|
prompt_lengths: Optional[int] = None, |
|
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, GemmaForCausalLM |
|
|
|
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") |
|
|
|
>>> prompt = "What is your favorite condiment?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"What is your favorite condiment?" |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if compress_ratio is not None and compress_ratio == 1: |
|
compress_ratio = None |
|
|
|
if self.config.layer_wise: |
|
if cutoff_layers is None: |
|
cutoff_layers = [self.config.num_hidden_layers] |
|
elif isinstance(cutoff_layers, int): |
|
cutoff_layers = [cutoff_layers] |
|
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep)) |
|
remove_layers = [i for i in cutoff_layers if i not in can_use_layers] |
|
if len(remove_layers) > 0: |
|
logger.warning_once( |
|
f"layers {remove_layers} are incompatible with the setting. They will be removed..." |
|
) |
|
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers] |
|
if len(cutoff_layers) == 0: |
|
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]") |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
compress_layer=compress_layer, |
|
compress_ratio=compress_ratio, |
|
query_lengths=query_lengths, |
|
prompt_lengths=prompt_lengths, |
|
cutoff_layers=cutoff_layers, |
|
) |
|
|
|
if not self.config.layer_wise: |
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
if self.config.final_logit_softcapping is not None: |
|
logits = logits / self.config.final_logit_softcapping |
|
logits = torch.tanh(logits) |
|
logits = logits * self.config.final_logit_softcapping |
|
logits = logits.float() |
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
else: |
|
hidden_states = outputs.hidden_states |
|
logits = () |
|
for i in range(len(hidden_states)): |
|
tmp_logits = self.lm_head[i].linear_head(hidden_states[i]) |
|
if self.config.final_logit_softcapping is not None: |
|
tmp_logits = tmp_logits / self.config.final_logit_softcapping |
|
tmp_logits = torch.tanh(tmp_logits) |
|
tmp_logits = tmp_logits * self.config.final_logit_softcapping |
|
tmp_logits = tmp_logits.float() |
|
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1) |
|
logits = logits + (tmp_logits,) |
|
loss = None |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CostWiseCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1] |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
past_length = 0 |
|
if past_key_values is not None: |
|
|
|
past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device) |
|
max_cache_length = ( |
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device) |
|
if past_key_values.get_max_length() is not None |
|
else None |
|
) |
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_length == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
|
|
|
|
|
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] |
|
if cache_position is None: |
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) |
|
elif use_cache: |
|
cache_position = cache_position[-input_length:] |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|