File size: 2,595 Bytes
c416453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0cbbe4
c416453
 
 
 
 
 
 
 
 
d0cbbe4
 
c416453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0cbbe4
c416453
 
 
 
 
 
d0cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c416453
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-detect-toxic-th
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice
      type: common_voice
      config: th
      split: validation
      args: th
    metrics:
    - name: Wer
      type: wer
      value: 0.4536376604850214
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-detect-toxic-th

This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2174
- Wer: 0.4536

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.3619        | 3.23  | 100  | 3.2891          | 1.0    |
| 3.299         | 6.45  | 200  | 3.1670          | 1.0    |
| 2.1179        | 9.68  | 300  | 1.1747          | 0.5221 |
| 1.1047        | 12.9  | 400  | 1.0323          | 0.5849 |
| 0.8974        | 16.13 | 500  | 1.0128          | 0.5029 |
| 0.769         | 19.35 | 600  | 1.0402          | 0.4957 |
| 0.6659        | 22.58 | 700  | 1.0902          | 0.4729 |
| 0.6114        | 25.81 | 800  | 1.1412          | 0.4629 |
| 0.5511        | 29.03 | 900  | 1.1156          | 0.4643 |
| 0.5137        | 32.26 | 1000 | 1.1556          | 0.4679 |
| 0.5132        | 35.48 | 1100 | 1.1851          | 0.4515 |
| 0.4583        | 38.71 | 1200 | 1.1971          | 0.4529 |
| 0.4523        | 41.94 | 1300 | 1.2182          | 0.4579 |
| 0.4329        | 45.16 | 1400 | 1.2178          | 0.4586 |
| 0.4502        | 48.39 | 1500 | 1.2174          | 0.4536 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 1.16.1
- Tokenizers 0.13.3