Edit model card

NLP_91_1

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4408
  • Accuracy: 0.9220
  • Precision: 0.9156
  • Recall: 0.9170
  • F1: 0.9158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.309 1.0 48 0.4280 0.8532 0.8506 0.8461 0.8454
0.2595 2.0 96 0.4335 0.8807 0.8767 0.8766 0.8738
0.2196 3.0 144 0.3883 0.8945 0.8956 0.8869 0.8876
0.1812 4.0 192 0.4664 0.8761 0.8856 0.8614 0.8638
0.1256 5.0 240 0.4764 0.8670 0.8750 0.8627 0.8625
0.142 6.0 288 0.5258 0.8670 0.8818 0.8580 0.8607
0.1006 7.0 336 0.4323 0.9037 0.8961 0.8989 0.8970
0.0897 8.0 384 0.4659 0.8991 0.8959 0.8891 0.8914
0.0595 9.0 432 0.4569 0.9174 0.9149 0.9099 0.9115
0.0399 10.0 480 0.4592 0.9037 0.8981 0.8970 0.8966
0.056 11.0 528 0.4461 0.9174 0.9102 0.9091 0.9094
0.0451 12.0 576 0.4772 0.8991 0.8926 0.8891 0.8906
0.0309 13.0 624 0.4396 0.9220 0.9160 0.9169 0.9155
0.0338 14.0 672 0.4423 0.9220 0.9156 0.9170 0.9158
0.0458 15.0 720 0.4408 0.9220 0.9156 0.9170 0.9158

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
507M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BDAIO/NLP_91_1

Finetuned
(104)
this model