pszemraj's picture
add link to colab
c168b7b
|
raw
history blame
7.9 kB
---
license: apache-2.0
datasets:
- BEE-spoke-data/pypi_clean-deduped
source_model: BEE-spoke-data/smol_llama-101M-GQA
language:
- en
tags:
- python
- codegen
- markdown
- smol_llama
metrics:
- accuracy
inference:
parameters:
max_new_tokens: 48
min_new_tokens: 8
num_beams: 3
early_stopping: true
repetition_penalty: 1.1
no_repeat_ngram_size: 6
renormalize_logits: true
widget:
- text: |
def add_numbers(a, b):
return
example_title: Add Numbers Function
- text: |
class Car:
def __init__(self, make, model):
self.make = make
self.model = model
def display_car(self):
example_title: Car Class
- text: |
import pandas as pd
data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data).convert_dtypes()
# eda
example_title: Pandas DataFrame
- text: |
def factorial(n):
if n == 0:
return 1
else:
example_title: Factorial Function
- text: |
def fibonacci(n):
if n <= 0:
raise ValueError("Incorrect input")
elif n == 1:
return 0
elif n == 2:
return 1
else:
example_title: Fibonacci Function
- text: |
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
# simple plot
example_title: Matplotlib Plot
- text: |
def reverse_string(s:str) -> str:
return
example_title: Reverse String Function
- text: |
def is_palindrome(word:str) -> bool:
return
example_title: Palindrome Function
- text: |
def bubble_sort(lst: list):
n = len(lst)
for i in range(n):
for j in range(0, n-i-1):
example_title: Bubble Sort Function
- text: |
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2
if arr[mid] == x:
return mid
elif arr[mid] > x:
example_title: Binary Search Function
---
# smol_llama-101M-GQA: python
<a href="https://colab.research.google.com/gist/pszemraj/91b5a267df95461b46922e6c0212e8f7/beecoder-basic-test-notebook.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
> 400MB of buzz: pure Python programming nectar! ๐Ÿฏ
This model is the general pre-trained checkpoint `BEE-spoke-data/smol_llama-101M-GQA` trained on a deduped version of `pypi` for +1 epoch. Play with the model in [this demo space](https://huggingface.co/spaces/BEE-spoke-data/beecoder-playground).
- Its architecture is the same as the base, with some new Python-related tokens added to vocab prior to training.
- It can generate basic Python code and markdown in README style, but will struggle with harder planning/reasoning tasks
- This is an experiment to test the abilities of smol-sized models in code generation; meaning **both** its capabilities and limitations
Use with care & understand that there may be some bugs ๐Ÿ› still to be worked out.
## Usage
๐Ÿ“Œ Be sure to note:
1. The model uses the "slow" llama2 tokenizer. Set use_fast=False when loading the tokenizer.
2. Use transformers library version 4.33.3 due to a known issue in version 4.34.1 (_at time of writing_)
> Which llama2 tokenizer the API widget uses is an age-old mystery, and may cause minor whitespace issues (widget only).
To install the necessary packages and load the model:
```python
# Install necessary packages
# pip install transformers==4.33.3 accelerate sentencepiece
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
use_fast=False,
)
model = AutoModelForCausalLM.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
device_map="auto",
)
# The model can now be used as any other decoder
```
### longer code-gen example
Below is a quick script that can be used as a reference/starting point for writing your own, better one :)
<details>
<summary>๐Ÿ”ฅ Unleash the Power of Code Generation! Click to Reveal the Magic! ๐Ÿ”ฎ</summary>
Are you ready to witness the incredible possibilities of code generation? ๐Ÿš€. Brace yourself for an exceptional journey into the world of artificial intelligence and programming. Observe a script that will change the way you create and finalize code.
This script provides entry to a planet where machines can write code with remarkable precision and imagination.
```python
"""
simple script for testing model(s) designed to generate/complete code
See details/args with the below.
python textgen_inference_code.py --help
"""
import logging
import random
import time
from pathlib import Path
import fire
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
logging.basicConfig(format="%(levelname)s - %(message)s", level=logging.INFO)
class Timer:
"""
Basic timer utility.
"""
def __enter__(self):
self.start_time = time.perf_counter()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.perf_counter()
self.elapsed_time = self.end_time - self.start_time
logging.info(f"Elapsed time: {self.elapsed_time:.4f} seconds")
def load_model(model_name, use_fast=False):
""" util for loading model and tokenizer"""
logging.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=use_fast)
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
model = torch.compile(model)
return tokenizer, model
def run_inference(prompt, model, tokenizer, max_new_tokens: int = 256):
"""
run_inference
Args:
prompt (TYPE): Description
model (TYPE): Description
tokenizer (TYPE): Description
max_new_tokens (int, optional): Description
Returns:
TYPE: Description
"""
logging.info(f"Running inference with max_new_tokens={max_new_tokens} ...")
with Timer() as timer:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
min_new_tokens=8,
renormalize_logits=True,
no_repeat_ngram_size=8,
repetition_penalty=1.04,
num_beams=4,
early_stopping=True,
)
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
logging.info(f"Output text:\n\n{text}")
return text
def main(
model_name="BEE-spoke-data/smol_llama-101M-GQA-python",
prompt:str=None,
use_fast=False,
n_tokens: int = 256,
):
"""Summary
Args:
model_name (str, optional): Description
prompt (None, optional): specify the prompt directly (default: random choice from list)
n_tokens (int, optional): max new tokens to generate
"""
logging.info(f"Inference with:\t{model_name}, max_new_tokens:{n_tokens}")
if prompt is None:
prompt_list = [
'''
def print_primes(n: int):
"""
Print all primes between 1 and n
"""''',
"def quantum_analysis(",
"def sanitize_filenames(target_dir:str, recursive:False, extension",
]
prompt = random.SystemRandom().choice(prompt_list)
logging.info(f"Using prompt:\t{prompt}")
tokenizer, model = load_model(model_name, use_fast=use_fast)
run_inference(prompt, model, tokenizer, n_tokens)
if __name__ == "__main__":
fire.Fire(main)
```
Wowoweewa!! It can create some file cleaning utilities.
</details>
---