|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: BEE-spoke-data/tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024-infinity-instruct-7m-T2T_en-1024-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024-infinity-instruct-7m-T2T_en-1024-v2 |
|
|
|
This model is a fine-tuned version of [BEE-spoke-data/tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024](https://huggingface.co/BEE-spoke-data/tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024) on the pszemraj/infinity-instruct-7m-T2T_en dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1159 |
|
- Num Input Tokens Seen: 810839096 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 6969 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:-----:|:---------------:|:-----------------:| |
|
| 1.234 | 0.0969 | 2000 | 1.2439 | 78067836 | |
|
| 1.2248 | 0.1938 | 4000 | 1.2256 | 156868756 | |
|
| 1.2024 | 0.2907 | 6000 | 1.2009 | 235148092 | |
|
| 1.2074 | 0.3876 | 8000 | 1.1777 | 313452856 | |
|
| 1.1617 | 0.4845 | 10000 | 1.1597 | 392316428 | |
|
| 1.1755 | 0.5815 | 12000 | 1.1437 | 471101508 | |
|
| 1.1473 | 0.6784 | 14000 | 1.1321 | 549831184 | |
|
| 1.1743 | 0.7753 | 16000 | 1.1244 | 628937800 | |
|
| 1.137 | 0.8722 | 18000 | 1.1179 | 707117360 | |
|
| 1.0713 | 0.9691 | 20000 | 1.1160 | 785755388 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|