File size: 61,586 Bytes
ffe9a2e
 
faff4cf
 
2066e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5183a
 
ffe9a2e
 
f7f9ba4
 
 
 
 
822951e
 
14b8abd
9d9580e
 
 
 
7659612
348bb9a
 
d368150
 
d9a3a25
 
 
 
d368150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348bb9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9580e
7659612
ba2a047
c518ad5
ba2a047
 
 
c518ad5
14b8abd
7659612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da19a46
7659612
 
 
fa8ed44
7659612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8ed44
7659612
 
 
 
 
73414cf
 
822951e
73414cf
 
 
 
 
 
 
c40dc3b
73414cf
 
 
 
 
 
 
 
 
 
 
 
73fb459
fe1d409
822951e
73414cf
 
 
 
 
 
 
 
 
c40dc3b
fe1d409
 
 
 
1ad65f0
 
fe1d409
 
 
1ad65f0
fe1d409
 
73414cf
 
 
 
822951e
73414cf
 
 
 
 
 
 
 
 
 
c40dc3b
73414cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cfa8b
 
822951e
41cfa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40dc3b
41cfa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a233a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cfa8b
a233a6a
 
41cfa8b
f7f9ba4
a233a6a
ffe9a2e
 
 
 
822951e
 
 
ffe9a2e
822951e
14b8abd
f5c46e3
ffe9a2e
 
 
 
 
ea59748
 
87c6b12
ea59748
 
27c0305
bf769fa
f487813
 
822951e
f487813
 
 
27c0305
822951e
f487813
27c0305
 
 
f487813
27c0305
822951e
27c0305
 
 
 
822951e
27c0305
 
 
 
ea59748
27c0305
 
290f442
 
27c0305
f487813
27c0305
 
 
 
 
822951e
 
f487813
27c0305
 
 
ea59748
822951e
 
bb4b2f3
15ecd68
ea59748
0aca87e
bb4b2f3
ea59748
 
 
 
87c6b12
ea59748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe9a2e
 
822951e
 
 
ffe9a2e
822951e
 
 
3ae0570
 
 
 
ea59748
 
ffe9a2e
87c6b12
ffe9a2e
 
 
 
 
 
d518a01
39879ab
ffe9a2e
 
 
39879ab
 
 
 
 
 
 
 
 
 
827ca90
 
 
 
 
39879ab
15ecd68
39879ab
15ecd68
 
 
 
39879ab
 
 
 
 
 
c40dc3b
ffe9a2e
14b8abd
290f442
822951e
ffe9a2e
0aca87e
 
87c6b12
0aca87e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe9a2e
 
ea59748
 
290f442
637f0b6
14b8abd
290f442
637f0b6
ea59748
 
 
 
 
 
 
 
 
 
6322785
 
ea59748
 
 
b292276
0fadc54
 
 
6322785
 
ed5183a
41ed92e
 
2066e91
6322785
 
 
637f0b6
6322785
 
2066e91
 
637f0b6
2066e91
 
9a47fac
2fe560e
0fadc54
 
 
 
 
2066e91
 
ed5183a
41ed92e
2066e91
 
 
 
 
637f0b6
2066e91
 
 
637f0b6
2066e91
 
 
9a47fac
1129866
5d576c8
 
0fadc54
1129866
0fadc54
 
 
1129866
 
ed5183a
41ed92e
 
1129866
 
 
637f0b6
1129866
 
 
 
637f0b6
1129866
 
 
9a47fac
1129866
0fadc54
 
 
 
 
8ecdcc4
 
ed5183a
 
 
8ecdcc4
 
 
 
 
637f0b6
8ecdcc4
 
 
637f0b6
8ecdcc4
 
 
0fadc54
8ecdcc4
0fadc54
 
 
8ecdcc4
 
ed5183a
 
 
8ecdcc4
 
 
 
 
 
637f0b6
8ecdcc4
 
 
637f0b6
8ecdcc4
 
 
ea59748
0fadc54
 
37440a7
 
290f442
 
14b8abd
41ed92e
0fadc54
 
 
c44f1ec
 
 
 
 
 
14b8abd
9ca9a32
c44f1ec
 
 
9ca9a32
c44f1ec
 
 
9ca9a32
c44f1ec
0fadc54
 
c44f1ec
0fadc54
 
 
37440a7
 
c2371e6
37440a7
 
 
e604e93
290f442
14b8abd
37440a7
 
e604e93
37440a7
290f442
37440a7
e604e93
 
37440a7
290f442
37440a7
0fadc54
 
 
 
 
c2371e6
0fadc54
c2371e6
 
 
 
 
 
 
290f442
9ca9a32
14b8abd
c2371e6
 
e604e93
c2371e6
290f442
c2371e6
9ca9a32
 
c2371e6
290f442
c2371e6
0fadc54
c44f1ec
8c327f4
c5123e7
 
637f0b6
 
 
 
 
 
 
c5123e7
8c327f4
 
c5123e7
 
e26d665
 
637f0b6
e26d665
c5123e7
e26d665
 
637f0b6
e26d665
c5123e7
e26d665
 
637f0b6
e26d665
c5123e7
e26d665
 
637f0b6
e26d665
c5123e7
e26d665
 
637f0b6
e26d665
c5123e7
e26d665
 
637f0b6
e26d665
c5123e7
 
 
 
 
ea59748
 
 
 
c5123e7
 
ea59748
637f0b6
 
290f442
 
ea59748
 
 
 
 
 
 
 
 
 
637f0b6
ea59748
 
 
 
 
 
 
15ecd68
 
14b8abd
 
 
c5123e7
ea59748
 
14b8abd
 
 
ea59748
 
 
 
 
 
 
 
 
2066e91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
---
license: apache-2.0
library_name: transformers
pipeline_tag: translation
language:
- bg
- ca
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fi
- fr
- ga
- gl
- hr
- hu
- it
- lt
- lv
- mt
- nl
- nb
- 'no'
- nn
- oc
- pl
- pt
- ro
- ru
- sl
- sk
- sr
- sv
- uk
- ast
- an
base_model:
- BSC-LT/salamandra-7b
---


![](./images/salamandra_header.png)

# Salamandra Model Card

SalamandraTA-7b-instruct is a translation LLM that has been instruction-tuned from SalamandraTA-7b-base. 
The base model results from continually pre-training [Salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b) on parallel data and has not been published, but is reserved for internal use. 
SalamandraTA-7b-instruct is proficent in 37 european languages and supports translation-related tasks, namely: sentence-level-translation, paragraph-level-translation, document-level-translation, automatic post-editing, machine translation evaluation, multi-reference-translation, named-entity-recognition and context-aware translation.

> [!WARNING]
> **DISCLAIMER:** This version of Salamandra is tailored exclusively for translation tasks. It lacks chat capabilities and has not been trained with any chat instructions.


---

## Model Details

### Description

SalamandraTA-7b-base is a continual pre-training of [Salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b) using parallel data, resulting in a total of 424B tokens processed during training.


### Architecture

|                         |               |
|-------------------------|:--------------|
| Total Parameters        | 7,768,117,248 |
| Embedding Parameters    | 1,048,576,000 |
| Layers                  | 32            |
| Hidden size             | 4,096         |
| Attention heads         | 32            |
| Context length          | 8,192         |
| Vocabulary size         | 256,000       |
| Precision               | bfloat16      |
| Embedding type          | RoPE          |
| Activation Function     | SwiGLU        |
| Layer normalization     | RMS Norm      |
| Flash attention         | ✅            |
| Grouped Query Attention | ✅            |
| Num. query groups       | 8             |


---

## Intended Use

### Direct Use

The model is intended for both research and commercial use in any of the languages included in the training data for general machine translation tasks.

### Out-of-scope Use

The model is not intended for malicious activities, such as harming others or violating human rights. 
Any downstream application must comply with current laws and regulations. 
Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged. 

---


## Hardware and Software

### Training Framework

SalamandraTA-7b-base was continually pre-trained using NVIDIA’s [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html), 
which leverages PyTorch Lightning for efficient model training in highly distributed settings.

SalamandraTA-7b-instruct was produced with [FastChat](https://github.com/lm-sys/FastChat).

### Compute Infrastructure

All models were trained on [MareNostrum 5](https://www.bsc.es/ca/marenostrum/marenostrum-5), a pre-exascale EuroHPC supercomputer hosted and
operated by Barcelona Supercomputing Center.

The accelerated partition is composed of 1,120 nodes with the following specifications:
- 4x Nvidia Hopper GPUs with 64GB HBM2 memory
- 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores)
- 4x NDR200 (BW per node 800Gb/s)
- 512 GB of Main memory (DDR5)
- 460GB on NVMe storage

---


## How to use

You can translate between the following 37 languages and varieties:

Aragonese, Asturian, Basque, Bulgarian, Catalan and Valencian variety, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Greek, Hungarian, 
Irish, Italian, Latvian, Lithuanian, Maltese, Norwegian Bokmål, Norwegian Nynorsk, Occitan and Aranese variety, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, 
Slovenian, Spanish, Swedish, Ukrainian, Welsh.

The instruction-following model uses the commonly adopted ChatML template:

```
<|im_start|>system
{SYSTEM PROMPT}<|im_end|>
<|im_start|>user
{USER PROMPT}<|im_end|>
<|im_start|>assistant
{MODEL RESPONSE}<|im_end|>
<|im_start|>user
[...]
```

The easiest way to apply it is by using the tokenizer's built-in functions, as shown in the following snippet.

```python
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "BSC-LT/salamandraTA-7b-instruct"

source = 'Spanish'
target = 'Catalan'
sentence = "Ayer se fue, tomó sus cosas y se puso a navegar. Una camisa, un pantalón vaquero y una canción, dónde irá, dónde irá. Se despidió, y decidió batirse en duelo con el mar. Y recorrer el mundo en su velero. Y navegar, nai-na-na, navegar"
 
text = f"Translate the following text from {source} into {target}.\n{source}: {sentence} \n{target}:"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16
  )

message = [ { "role": "user", "content": text } ]
date_string = datetime.today().strftime('%Y-%m-%d')

prompt = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True,
    date_string=date_string
)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
input_length = inputs.shape[1]
outputs = model.generate(input_ids=inputs.to(model.device), 
                         max_new_tokens=400,
                         early_stopping=True,
                         num_beams=5)

print(tokenizer.decode(outputs[0, input_length:], skip_special_tokens=True))
# Ahir se'n va anar, va recollir les seves coses i es va fer a la mar. Una camisa, uns texans i una cançó, on anirà, on anirà. Es va acomiadar i va decidir batre's en duel amb el mar. I fer la volta al món en el seu veler. I navegar, nai-na-na, navegar
```

Using this template, each turn is preceded by a `<|im_start|>` delimiter and the role of the entity 
(either `user`, for content supplied by the user, or `assistant` for LLM responses), and finished with the `<|im_end|>` token.

#### General translation

For machine translation tasks, you can use the following prompt template:

```
Translate the following text from {source} into {target}.
{source}: {source sentence}
{target}:
```
<details>
<summary>Show an example</summary>

```python
source = 'Catalan'
target = 'Galician'
source_sentence = "Als antics egipcis del període de l'Imperi Nou els fascinaven els monuments dels seus predecessors, que llavors tenien més de mil anys."

text = f"Translate the following text from {source} into {target}.\n{source}: {source_sentence} \n{target}:"
# Os antigos exipcios do período do Imperio Novo estaban fascinados polos monumentos dos seus predecesores, que entón tiñan máis de mil anos de antigüidade.
```

</details>

### Post-editing

For post-editing tasks, you can use the following prompt template:

```
Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.
Source: {source_sentence}
MT: {machine_translation}
Corrected:"
```

<details>
<summary>Show an example</summary>

```python
source = 'Catalan'
target = 'English'
source_sentence = 'Rafael Nadal i Maria Magdalena van inspirar a una generació sencera.'
machine_translation = 'Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way.'

text = f"Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.\nSource: {source_sentence} \nMT: {machine_translation} \nCorrected:"

# Rafael Nadal and Maria Magdalena inspired an entire generation.
```

</details>

### Document-level translation

For document-level translation tasks, you can use the following prompt template:

```
Please translate this text from {source} into {target}.
{source}: {1st paragraph of the document}
{2nd paragraph of the document}
{Nth paragraph of the document}
{target}:
```

<details>
<summary>Show an example</summary>
  
```python
source = 'English'
target = 'Asturian'

text = """Please translate this text from {} into {}.\n{}: President Donald Trump, who campaigned on promises to crack down on illegal immigration, has raised alarms in the U.S. dairy industry with his threat to impose 25% tariffs on Mexico and Canada by February 2025. This move is part of a broader strategy to declare a national emergency at the southern border to halt illegal migration completely.
However, the implications for the agriculture sector, particularly dairy, are significant. Approximately half of the U.S. dairy industry's workforce consists of immigrant labor, many of whom are undocumented. The National Milk Producers Federation estimates that removing immigrant workers could decimate the dairy herd by 2.1 million cows and slash milk production by nearly 50 billion pounds, leading to a dramatic 90.4% increase in milk prices.
The complex perspectives of Americans on undocumented workers were highlighted in a Pew Research Center study. While 64% of U.S. adults support legal pathways for undocumented immigrants, 35% oppose it—a gap that has been narrowing recently. Factors influencing public opinion include the belief that immigrants should have jobs and pass security checks, contrasted by concerns about lawbreakers being rewarded, fairness for legal migrants, and resource allocation.
According to Zach Rutledge, an agricultural economist at Michigan State University, as nations grow wealthier, their labor forces transition away from agriculture toward sectors like services and manufacturing. This shift has led to the U.S. relying heavily on immigrant labor for agricultural work. Domestic workers, even with employment taxes, may cost $15 to $25 an hour, while H-2A visa program workers might cost $25 to $30 an hour, accounting for additional housing expenses.
The National Milk Producers Federation has been vocal in advocating for changes to the H-2A visa program, which outside of its current seasonal limitations, does not support the dairy industry's year-round labor needs. Executive vice-president Jaime Castaneda reiterated the need for legislative clarity to address the undocumented workforce issues in dairy farming.
The Farm Workforce Modernization Act of 2023, which could grant legal status to certain undocumented farmworkers, has been stalled in Congress, despite acknowledgment of the sector's importance to feeding America. The need for coordinated legislative efforts to ensure both border security and labor market stability is imperative moving forward.
{}:""".format(source, target, source, target)
```

</details>

### Named-entity recognition

For named-entity recognition tasks, you can use the following prompt template:

```
Analyse the following tokenized text and mark the tokens containing named entities.
Use the following annotation guidelines with these tags for named entities:
- ORG (Refers to named groups or organizations)
- PER (Refers to individual people or named groups of people)
- LOC (Refers to physical places or natural landmarks)
- MISC (Refers to entities that don't fit into standard categories).
Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.
If a token is not a named entity, label it as O.
Input: {list of words in a sentence}
Marked: 
```

<details>
<summary>Show an example</summary>
  
```python
text = """Analyse the following tokenized text and mark the tokens containing named entities.
Use the following annotation guidelines with these tags for named entities: 
- ORG (Refers to named groups or organizations)
- PER (Refers to individual people or named groups of people)
- LOC (Refers to physical places or natural landmarks)
- MISC (Refers to entities that don't fit into standard categories).
Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.
If a token is not a named entity, label it as O.
Input: ['La', 'defensa', 'del', 'antiguo', 'responsable', 'de', 'la', 'RFEF', 'confirma', 'que', 'interpondrá', 'un', 'recurso.']
Marked: """

# [('La', 'O'), ('defensa', 'O'), ('del', 'O'), ('antiguo', 'O'), ('responsable', 'O'), ('de', 'O'), ('la', 'O'), ('RFEF', 'B-ORG'), ('confirma', 'O'), ('que', 'O'), ('interpondrá', 'O'), ('un', 'O'), ('recurso.', 'O')]
```
</details>


### Grammar checker

For fixing any mistakes in grammar, you can use the following prompt template:

```
Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.
Sentence: {sentence}
Corrected:
```

<details>
<summary>Show an example</summary>

```python
source = 'Catalan'
sentence = 'Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.'

text = f"Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.\nSentence: {sentence} \nCorrected:"

# Llavors, el meu cap m'ha dit que he de treballar els caps de setmana.
```
</details>


## Data

### Pretraining Data

The pretraining corpus consists of 424 billion tokens of Catalan-centric, Spanish-centric, and English-centric parallel data, 
including all of the official European languages plus Catalan, Basque, Galician, Asturian, Aragonese and Aranese. 
It amounts to 6,574,251,526 parallel sentence pairs. 

This highly multilingual corpus is predominantly composed of data sourced from [OPUS](https://opus.nlpl.eu/), 
with additional data taken from the [NTEU Project](https://nteu.eu/), [Aina Project](https://projecteaina.cat/), and other sources 
(see: [Data Sources](#pre-data-sources) and [References](#pre-references)). 
Where little parallel Catalan <-> xx data could be found, synthetic Catalan data was generated from the Spanish side of the collected Spanish <-> xx corpora using 
[Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca). The final distribution of languages was as below:

![](./treemap.png)

Click the expand button below to see the full list of corpora included in the training data.

<details id="pre-data-sources">
<summary>Data Sources</summary>
 
| Dataset                                   	| Ca-xx Languages                                                                                                	|  Es-xx Langugages                             | En-xx Languages |
|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
|[AINA](https://huggingface.co/projecte-aina) | en     |       |       |
|ARANESE-SYNTH-CORPUS-BSC                         | arn   |      |         |
|BOUA-SYNTH-BSC             |     | val |        |
|[BOUMH](https://github.com/transducens/PILAR/tree/main/valencian/BOUMH) |          | val   |           |
|[BOUA-PILAR](https://github.com/transducens/PILAR/tree/main/valencian/BOUA)  |          | val |       |
|[CCMatrix](https://opus.nlpl.eu/CCMatrix/corpus/version/CCMatrix)		|eu			|		| ga | 
|[DGT](https://opus.nlpl.eu/DGT/corpus/version/DGT)			|			|bg,cs,da,de,el	,et,fi,fr,ga,hr,hu,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv	|    da,et,ga,hr,hu,lt,lv,mt,sh,sl|
|DOGV-SYNTH-BSC                 |      |  val    |         |
|[DOGV-PILAR](https://github.com/transducens/PILAR/tree/main/valencian/DOGV-html) |           | val |            | 
|[ELRC-EMEA](https://opus.nlpl.eu/ELRC-EMEA/corpus/version/ELRC-EMEA)		|			|bg,cs,da,hu,lt,lv,mt,pl,ro,sk,sl		| et,hr,lv,ro,sk,sl |
|[EMEA](https://opus.nlpl.eu/EMEA/corpus/version/EMEA)			|			|bg,cs,da,el,fi,hu,lt,mt,nl,pl,ro,sk,sl,sv		|    et,mt  |
|[EUBookshop](https://opus.nlpl.eu/EUbookshop/corpus/version/EUbookshop)		|lt,pl,pt			|cs,da,de,el,fi,fr,ga,it,lv,mt,nl,pl,pt,ro,sk,sl,sv		|cy,ga|
|[Europarl](https://opus.nlpl.eu/Europarl/corpus/version/Europarl)		|			|bg,cs,da,el,en,fi,fr,hu,lt,lv,nl,pl,pt	,ro,sk,sl,sv	| |
|[Europat](https://opus.nlpl.eu/EuroPat/corpus/version/EuroPat)		|			|en,hr		| no  |
|[GAITU Corpus](https://gaitu.eus/) | | | eu|
|[KDE4](https://opus.nlpl.eu/KDE4/corpus/version/KDE4)			|bg,cs,da,de,el	,et,eu,fi,fr,ga,gl,hr,it,lt,lv,nl,pl,pt,ro,sk,sl,sv	|bg,ga,hr	|cy,ga,nn,oc |
|[GlobalVoices](https://opus.nlpl.eu/GlobalVoices/corpus/version/GlobalVoices)		| bg,de,fr,it,nl,pl,pt	|bg,de,fr,pt		|  |
|[GNOME](https://opus.nlpl.eu/GNOME/corpus/version/GNOME)		|eu,fr,ga,gl,pt		|ga		|cy,ga,nn|  
|[JRC-Arquis](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis)		|			|cs,da,et,fr,lt,lv,mt,nl,pl	,ro,sv|	 et  |
|LES-CORTS-VALENCIANES-SYNTH-BSC  |            | val            |           |
|[MaCoCu](https://opus.nlpl.eu/MaCoCu/corpus/version/MaCoCu)                    | en     |     | hr,mt,uk   |
|[MultiCCAligned](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis)	|bg,cs,de,el,et,fi,fr,hr,hu,it,lt,lv,nl,pl,ro,sk,sv	|bg,fi,fr,hr,it,lv,nl,pt		|bg,cy,da,et,fi,hr,hu,lt,lv,no,sl,sr,uk|
|[MultiHPLT](https://opus.nlpl.eu/MultiHPLT/corpus/version/MultiHPLT)		|en, et,fi,ga,hr,mt		|		|fi,ga,gl,hr,mt,nn,sr |
|[MultiParaCrawl](https://opus.nlpl.eu/MultiParaCrawl/corpus/version/MultiParaCrawl)	|bg,da		|de,en,fr,ga,hr,hu,it,mt,pt		|bg,cs,da,de,el,et,fi,fr,ga,hr,hu,lt,lv,mt,nn,pl,ro,sk,sl,uk|
|[MultiUN](https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN)		|			|fr	|	|	
|[News-Commentary](https://opus.nlpl.eu/News-Commentary/corpus/version/News-Commentary) 	|		|fr		|  |
|[NLLB](https://opus.nlpl.eu/NLLB/corpus/version/NLLB)			|bg,da,el,en,et,fi,fr,gl,hu,it	,lt,lv,pt,ro,sk,sl	|bg,cs,da,de,el	,et,fi,fr,hu,it,lt,lv,nl,pl,pt	,ro,sk,sl,sv| bg,cs,cy,da,de,el,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,no,oc,pl,pt,ro,ru,sk,sl,sr,sv,uk|
|[NÓS Authentic Corpus](https://zenodo.org/records/7675110)                 |               |               |    gl      |
|[NÓS Synthetic Corpus](https://zenodo.org/records/7685180)            |                |               |   gl       |
|[NTEU](https://www.elrc-share.eu/repository/search/?q=NTEU)			|			|bg,cs,da,de,el,en,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv	|        da,et,ga,hr,lt,lv,mt,ro,sk,sl,sv     |	 
|[OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) 	|bg,cs,da,de,el	,et,eu,fi,gl,hr,hu,lt,lv,nl,pl,pt,ro,sk,sl,sv	|da,de,fi,fr,hr,hu,it,lv,nl		| bg,cs,de,el,et,hr,fi,fr,hr,hu,no,sl,sr|
|[OPUS-100](https://opus.nlpl.eu/opus-100.php)   | en |  | gl |
|[StanfordNLP-NMT](https://opus.nlpl.eu/StanfordNLP-NMT/corpus/version/StanfordNLP-NMT) | | |cs |
|[Tatoeba](https://opus.nlpl.eu/Tatoeba/corpus/version/Tatoeba)		|de,pt			|pt		|   |
|[TildeModel](https://opus.nlpl.eu/TildeMODEL/corpus/version/TildeMODEL)		|			|bg		| et,hr,lt,lv,mt |
|[UNPC](https://opus.nlpl.eu/UNPC/corpus/version/UNPC)			|			|en,fr		| ru  |	
|[PILAR-VALENCIAN-AUTH](https://github.com/transducens/PILAR/tree/main/valencian/Generalitat)  |          |    val     |          |
|[PILAR-VALENCIAN-SYNTH](https://github.com/transducens/PILAR/tree/main/valencian/Generalitat)  |      | val |     |
|[WikiMatrix](https://opus.nlpl.eu/WikiMatrix/corpus/version/WikiMatrix)		|bg,cs,da,de,el	,et,eu,fi,fr,gl,hr,hu,it,lt,nl,pl,pt,ro,sk,sl,sv	|bg,en,fr,hr,it,pt		| oc,sh |
|[Wikimedia](https://opus.nlpl.eu/wikimedia/corpus/version/wikimedia) | | |cy,nn |
|[XLENT](https://opus.nlpl.eu/XLEnt/corpus/version/XLEnt)		|eu,ga,gl			|ga		|cy,et,ga,gl,hr,oc,sh|


Datasets with "-BSC" in their names (e.g., BOUA-SYNTH-BSC, DOGV-SYNTH-BSC) are synthetic datasets obtained by machine translating 
pre-existing monolingual corpora with our own seq-to-seq models. These datasets were generated internally for model training and are not published.

To consult the data summary document with the respective licences, please send an e-mail to ipr@bsc.es. 



</details>



<details id="pre-references">
<summary>References</summary>

- Aulamo, M., Sulubacak, U., Virpioja, S., & Tiedemann, J. (2020). OpusTools and Parallel Corpus Diagnostics. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3782–3789). European Language Resources Association. https://aclanthology.org/2020.lrec-1.467
- Chaudhary, V., Tang, Y., Guzmán, F., Schwenk, H., & Koehn, P. (2019). Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings. In O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, M. Turchi, & K. Verspoor (Eds.), Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2) (pp. 261–266). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5435
- DGT-Translation Memory—European Commission. (n.d.). Retrieved November 4, 2024, from https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-translation-memory_en
- Eisele, A., & Chen, Y. (2010). MultiUN: A Multilingual Corpus from United Nation Documents. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf
- El-Kishky, A., Chaudhary, V., Guzmán, F., & Koehn, P. (2020). CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 5960–5969. https://doi.org/10.18653/v1/2020.emnlp-main.480
- El-Kishky, A., Renduchintala, A., Cross, J., Guzmán, F., & Koehn, P. (2021). XLEnt: Mining a Large Cross-lingual Entity Dataset with Lexical-Semantic-Phonetic Word Alignment. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 10424–10430. https://doi.org/10.18653/v1/2021.emnlp-main.814
- Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T., Liptchinsky, V., Edunov, S., Grave, E., Auli, M., & Joulin, A. (2020). Beyond English-Centric Multilingual Machine Translation (No. arXiv:2010.11125). arXiv. https://doi.org/10.48550/arXiv.2010.11125
- García-Martínez, M., Bié, L., Cerdà, A., Estela, A., Herranz, M., Krišlauks, R., Melero, M., O’Dowd, T., O’Gorman, S., Pinnis, M., Stafanovič, A., Superbo, R., & Vasiļevskis, A. (2021). Neural Translation for European Union (NTEU). 316–334. https://aclanthology.org/2021.mtsummit-up.23
- Gibert, O. de, Nail, G., Arefyev, N., Bañón, M., Linde, J. van der, Ji, S., Zaragoza-Bernabeu, J., Aulamo, M., Ramírez-Sánchez, G., Kutuzov, A., Pyysalo, S., Oepen, S., & Tiedemann, J. (2024). A New Massive Multilingual Dataset for High-Performance Language Technologies (No. arXiv:2403.14009). arXiv. http://arxiv.org/abs/2403.14009
- Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. Proceedings of Machine Translation Summit X: Papers, 79–86. https://aclanthology.org/2005.mtsummit-papers.11
- Kreutzer, J., Caswell, I., Wang, L., Wahab, A., Van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez, P. O., … Adeyemi, M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of the Association for Computational Linguistics, 10, 50–72. https://doi.org/10.1162/tacl_a_00447
- Rozis, R.,Skadiņš, R (2017). Tilde MODEL - Multilingual Open Data for EU Languages. https://aclanthology.org/W17-0235
- Schwenk, H., Chaudhary, V., Sun, S., Gong, H., & Guzmán, F. (2019). WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia (No. arXiv:1907.05791). arXiv. https://doi.org/10.48550/arXiv.1907.05791
- Schwenk, H., Wenzek, G., Edunov, S., Grave, E., & Joulin, A. (2020). CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB (No. arXiv:1911.04944). arXiv. https://doi.org/10.48550/arXiv.1911.04944
- Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., & Varga, D. (n.d.). The JRC-Acquis: A Multilingual Aligned Parallel Corpus with 20+ Languages. http://www.lrec-conf.org/proceedings/lrec2006/pdf/340_pdf
- Subramani, N., Luccioni, S., Dodge, J., & Mitchell, M. (2023). Detecting Personal Information in Training Corpora: An Analysis. In A. Ovalle, K.-W. Chang, N. Mehrabi, Y. Pruksachatkun, A. Galystan, J. Dhamala, A. Verma, T. Cao, A. Kumar, & R. Gupta (Eds.), Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023) (pp. 208–220). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.trustnlp-1.18
- Tiedemann, J. (23-25). Parallel Data, Tools and Interfaces in OPUS. In N. C. (Conference Chair), K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper
- Ziemski, M., Junczys-Dowmunt, M., & Pouliquen, B. (n.d.). The United Nations Parallel Corpus v1.0. https://aclanthology.org/L16-1561



</details>


### Instruction Tuning Data

This model has been fine-tuned on ~135k instructions, primarily targeting machine translation performance for Catalan, English, and Spanish. 
Additional instruction data for other European and closely related Iberian languages was also included, as it yielded a positive impact on the languages of interest. 
That said, the performance in these additional languages is not guaranteed due to the limited amount of available data and the lack of resources for thorough testing.

A portion of our fine-tuning data comes directly from, or is sampled from [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2). 
We also created additional datasets for our main languages of interest. 
While tasks relating to machine translation are included, it’s important to note that no chat data was used in the fine-tuning process.
The final distribution of tasks was as below:

![](./chart.png)


Click the expand button below to see the full list of tasks included in the finetuning data.

<details id="instr-data-sources">
<summary>Data Sources</summary>



| Task                             | Source                                                                                   | Languages                                                      | Count  |
|----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|
| Multi-reference Translation      | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [Tatoeba Dev (filtered)](https://github.com/Helsinki-NLP/Tatoeba-Challenge)                      | mixed                                                          | 10000  |
| Paraphrase 		           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [PAWS-X Dev](https://github.com/google-research-datasets/paws)                     | mixed                                                          | 3521   |
| Named-entity Recognition         | [AnCora-Ca-NER](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner)                | ca                                                             | 12059  |
| Named-entity Recognition         | [BasqueGLUE](https://huggingface.co/datasets/orai-nlp/basqueGLUE), [EusIE](https://huggingface.co/datasets/HiTZ/EusIE) | eu                                                             | 4304   |
| Named-entity Recognition         | [SLI NERC Galician Gold Corpus](https://github.com/xavier-gz/SLI_Galician_Corpora)          | gl                                                             | 6483   |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | pt                                                             | 854    |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | nl                                                             | 800    |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | es                                                             | 1654   |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | en                                                             | 1671   |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | ru                                                             | 800    |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | it                                                             | 858    |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | fr                                                             | 857    |
| Named-entity Recognition         | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/)                     | de                                                             | 1312   |
| Terminology-aware Translation    | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT21 Terminology Dev (filtered)](https://www.statmt.org/wmt21/terminology-task.html)                     | en-ru                                                          | 50     |
| Terminology-aware Translation    | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT21 Terminology Dev (filtered)](https://www.statmt.org/wmt21/terminology-task.html)                     | en-fr                                                          | 29     |
| Automatic Post Editing           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/)                     | en-fr                                                          | 6133   |
| Automatic Post Editing           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/)                     | en-nl                                                          | 9077   |
| Automatic Post Editing           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/)                     | en-pt                                                          | 5762   |
| Automatic Post Editing           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/)                     | de-en                                                          | 10000  |
| Automatic Post Editing           | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/)                     | en-de                                                          | 10000  |
| Machine Translation Evaluation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2)-sample: [WMT20 to WMT22 Metrics MQM](https://www.statmt.org/wmt22/results.html), [WMT17 to WMT22 Metrics Direct Assessments](https://www.statmt.org/wmt22/results.html)                                                                       | en-ru, en-pl, ru-en, en-de, en-ru, de-fr, de-en, en-de             | 353    |
| Machine Translation Evaluation   | Non-public                                                                                     | four pivot languages (eu, es, ca, gl) paired with European languages (bg, cs, da, de, el, en, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv)                                   | 9700   |
| General Machine Translation      | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT14 to WMT21](https://www.statmt.org/wmt22/results.html), [NTREX](https://github.com/MicrosoftTranslator/NTREX), [Flores Dev](https://github.com/facebookresearch/flores), [FRMT](https://github.com/google-research/google-research/tree/master/frmt), [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/), [OPUS (Quality Filtered)](https://opus.nlpl.eu/), [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | nl-en, en-ru, it-en, fr-en, es-en, en-fr, ru-en, fr-de, en-nl, de-fr  | 500    |
| General Machine Translation      | Non-public                                                                                    | three pivot languages (es, ca, en) paired with European languages (ast, arn, arg, bg, cs, cy, da, de, el, et, fi, ga, gl, hr, it, lt, lv, mt, nb, nn, nl, oc, pl, pt, ro, ru, sk, sl, sr, sv, uk, eu)                                    | 9350   |
| Fill-in-the-Blank                | Non-public                                                                                     | five pivot languages (ca, es, eu, gl, en) paired with European languages (cs, da, de, el, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv)                                     | 11500  |
| Document-level Translation       | Non-public                                                                                      | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv)                                                             | 7600   |
| Paragraph-level Translation      | Non-public                                                                                      | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv)                                                              | 7600   |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-it                                                          | 348    |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-ru                                                          | 454    |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-fr                                                          | 369    |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-nl                                                          | 417    |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-es                                                          | 431    |
| Context-Aware Translation   | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval)                     | en-de                                                          | 558    |
|**Total**                  |                    |          |     **135,404**       |

The non-public portion of this dataset was jointly created by the [ILENIA](https://proyectoilenia.es/) partners: BSC-LT, [HiTZ](http://hitz.ehu.eus/es), 
and [CiTIUS](https://citius.gal/es/). For further information regarding the instruction-tuning data, 
please contact <langtech@bsc.es>.

</details>

<details id="instr-references">
<summary>References</summary>

- Alves, D. M., Pombal, J., Guerreiro, N. M., Martins, P. H., Alves, J., Farajian, A., Peters, B., Rei, R., Fernandes, P., Agrawal, S., Colombo, P., de Souza, J. G. C., & Martins, A. F. T. (2024). Tower: An open multilingual large language model for translation-related tasks (No. arXiv: 2402.17733). arXiv. https://arxiv.org/abs/2402.17733
- Armengol-Estapé, J., Carrino, C. P., Rodriguez-Penagos, C., de Gibert Bonet, O., Armentano-Oller, C., Gonzalez-Agirre, A., Melero, M., & Villegas, M. (2021). Are multilingual models the best choice for moderately under-resourced languages? A comprehensive assessment for Catalan. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 4933–4946. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-acl.437
- Currey, A., Nadejde, M., Pappagari, R. R., Mayer, M., Lauly, S., Niu, X., Hsu, B., & Dinu, G. (2022). MT-GenEval: A counterfactual and contextual dataset for evaluating gender accuracy in machine translation. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 4287–4299). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.emnlp-main.288
- Federmann, C., Kocmi, T., & Xin, Y. (2022). NTREX-128 – News test references for MT evaluation of 128 languages. Proceedings of the First Workshop on Scaling Up Multilingual Evaluation, 21–24. Association for Computational Linguistics. https://aclanthology.org/2022.sumeval-1.4
- Ive, J., Specia, L., Szoc, S., Vanallemeersch, T., Van den Bogaert, J., Farah, E., Maroti, C., Ventura, A., & Khalilov, M. (2020). A post-editing dataset in the legal domain: Do we underestimate neural machine translation quality? In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3692–3697). European Language Resources Association. https://aclanthology.org/2020.lrec-1.455/
- Malmasi, S., Fang, A., Fetahu, B., Kar, S., & Rokhlenko, O. (2022). MultiCoNER: A large-scale multilingual dataset for complex named entity recognition. Proceedings of the 29th International Conference on Computational Linguistics, 3798–3809. International Committee on Computational Linguistics. https://aclanthology.org/2022.coling-1.334/
- NLLB Team, Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M., Heafield, K., Heffernan, K., Kalbassi, E., Lam, J., Licht, D., Maillard, J., Sun, A., Wang, S., Wenzek, G., Youngblood, A., Akula, B., Barrault, L., Mejia Gonzalez, G., Hansanti, P., Hoffman, J., Jarrett, S., Sadagopan, K. R., Rowe, D., Spruit, S., Tran, C., Andrews, P., Ayan, N. F., Bhosale, S., Edunov, S., Fan, A., Gao, C., Goswami, V., Guzmán, F., Koehn, P., Mourachko, A., Ropers, C., Saleem, S., Schwenk, H., & Wang, J. (2022). No language left behind: Scaling human-centered machine translation (No. arXiv: 2207.04672). arXiv. https://arxiv.org/abs/2207.04672
- Riley, P., Dozat, T., Botha, J. A., Garcia, X., Garrette, D., Riesa, J., Firat, O., & Constant, N. (2022). FRMT: A benchmark for few-shot region-aware machine translation (No. arXiv: 2210.00193). arXiv. https://doi.org/10.48550/ARXIV.2210.00193
- Specia, L., Harris, K., Blain, F., Burchardt, A., Macketanz, V., Skadiņa, I., Negri, M., & Turchi, M. (2017). Translation quality and productivity: A study on rich morphology languages. Proceedings of Machine Translation Summit XVI, 55–71. Nagoya, Japan.
- Tiedemann, J. (2020). The Tatoeba translation challenge – Realistic data sets for low-resource and multilingual MT. Proceedings of the Fifth Conference on Machine Translation, 1174–1182. Association for Computational Linguistics. https://www.aclweb.org/anthology/2020.wmt-1.139
- Urbizu, G., San Vicente, I., Saralegi, X., Agerri, R., & Soroa, A. (2022). BasqueGLUE: A natural language understanding benchmark for Basque. Proceedings of the Language Resources and Evaluation Conference, 1603–1612. European Language Resources Association. https://aclanthology.org/2022.lrec-1.172
- Yang, Y., Zhang, Y., Tar, C., & Baldridge, J. (2019). PAWS-X: A cross-lingual adversarial dataset for paraphrase identification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3687–3692). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1382
- Zubillaga, M., Sainz, O., Estarrona, A., Lopez de Lacalle, O., & Agirre, E. (2024). Event extraction in Basque: Typologically motivated cross-lingual transfer-learning analysis (No. arXiv: 2404.06392). arXiv. https://arxiv.org/abs/2404.06392



</details>

## Evaluation

Below are the evaluation results on the [Flores+200 devtest set](https://huggingface.co/datasets/openlanguagedata/flores_plus), 
compared against the state-of-the-art [MADLAD400-7B-mt model](https://huggingface.co/google/madlad400-7b-mt) ([Kudugunta, S., et al.](https://arxiv.org/abs/2309.04662)) and SalamandraTA-7b-base model. 
These results cover the translation directions CA-XX, ES-XX, EN-XX, as well as XX-CA, XX-ES, and XX-EN. 
The metrics have been computed excluding Asturian, Aranese, and Aragonese, as we report them separately. 
The evaluation was conducted using [MT-Lens](https://github.com/langtech-bsc/mt-evaluation), following the standard setting (beam search with beam size 5, limiting the translation length to 500 tokens). We report the following metrics:

<details>
<summary>Click to show metrics details</summary>

- `BLEU`: Sacrebleu implementation. Signature: nrefs:1— case:mixed— eff:no— tok:13a— smooth:exp—version:2.3.1
- `TER`: Sacrebleu implementation.
- `ChrF`: Sacrebleu implementation.
- `Comet`: Model checkpoint: "Unbabel/wmt22-comet-da".
- `Comet-kiwi`: Model checkpoint: "Unbabel/wmt22-cometkiwi-da".
- `Bleurt`: Model checkpoint: "lucadiliello/BLEURT-20".
- `MetricX`: Model checkpoint: "google/metricx-23-xl-v2p0".
- `MetricX-QE`: Model checkpoint: "google/metricx-23-qe-xl-v2p0".

</details>


<details>
<summary>English evaluation</summary>
  
### English

This section presents the evaluation metrics for English translation tasks.


|                       |   Bleu↑ |   Ter↓ |   ChrF↑ |   Comet↑ |   Comet-kiwi↑ |   Bleurt↑ |   MetricX↓ |   MetricX-QE↓ |
|:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:|
| **EN-XX** | | | | | | | | |
| SalamandraTA-7b-instruct |  **36.29** | **50.62** |  63.3  |    **0.89** |         **0.85** |     **0.79** |      **1.02** |         **0.94** |
| MADLAD400-7B-mt                     |  35.73 | 51.87 |  **63.46** |    0.88 |         **0.85** |     **0.79** |      1.16 |         1.1  |
| SalamandraTA-7b-base                   |  34.99 | 52.64 |  62.58 |    0.87 |         0.84 |     0.77 |      1.45 |         1.23 |
| **XX-EN** | | | | | | | | |
| SalamandraTA-7b-instruct |  **44.69** | **41.72** |  68.17 |    **0.89** |         0.85 |      **0.8** |      **1.09** |         **1.11** |
| SalamandraTA-7b-base                   |  44.12 | 43    |  **68.43** |    **0.89** |         0.85 |      **0.8** |      1.13 |         1.22 |
| MADLAD400-7B-mt                     |  43.2  | 43.33 |  67.98 |    **0.89** |         **0.86** |      0.8 |      1.13 |         1.15 |


<img src="./images/bleu_en.png" alt="English" width="100%"/>

</details>

<details>
<summary>Spanish evaluation</summary>
  
### Spanish

This section presents the evaluation metrics for Spanish translation tasks.


|                       |   Bleu↑ |   Ter↓ |   ChrF↑ |   Comet↑ |   Comet-kiwi↑ |   Bleurt↑ |   MetricX↓ |   MetricX-QE↓ |
|:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:|
| **ES-XX** | | | | | | | | |
| SalamandraTA-7b-instruct |  **23.67** | **65.71** |  53.55 |    **0.87** |         0.82 |     **0.75** |      **1.04** |         **1.05** |
| MADLAD400-7B-mt                     |  22.48 | 68.91 |  **53.93** |    0.86 |         **0.83** |     **0.75** |      1.09 |         1.14 |
| SalamandraTA-7b-base                   |  21.63 | 70.08 |  52.98 |    0.86 |         **0.83** |     0.74 |      1.24 |         1.12 |
| **XX-ES** | | | | | | | | |
| SalamandraTA-7b-instruct |  **25.56** | **62.51** |  52.69 |    **0.85** |         0.83 |     0.73 |      **0.94** |         **1.33** |
| MADLAD400-7B-mt                   |  24.85 | 61.82 |  **53**    |    **0.85** |         **0.84** |     **0.74** |      1.05 |         1.5  |
| SalamandraTA-7b-base                     |  24.71 | 62.33 |  52.96 |    **0.85** |         **0.84** |     0.73 |      1.06 |         1.37 |


<img src="./images/bleu_es.png" alt="English" width="100%"/>

<img src="./images/es_xx_bars.png" alt="ESXX" width="100%"/>

</details>

<details>
<summary>Catalan evaluation</summary>
  
### Catalan

This section presents the evaluation metrics for Catalan translation tasks.


|                       |   Bleu↑ |   Ter↓ |   ChrF↑ |   Comet↑ |   Comet-kiwi↑ |   Bleurt↑ |   MetricX↓ |   MetricX-QE↓ |
|:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:|
| **CA-XX** | | | | | | | | |
| MADLAD400-7B-mt                  |  **29.37** | 59.01 |  **58.47** |    **0.87** |         **0.81** |     **0.77** |      **1.08** |         1.31 |
| SalamandraTA-7b-instruct      |  29.23 | **58.32** |  57.76 |    **0.87** |         **0.81** |     **0.77** |      **1.08** |         **1.22** |
| SalamandraTA-7b-base          |  29.06 | 59.32 |  58    |    **0.87** |         **0.81** |     0.76 |      1.23 |         1.28 | 
| **XX-CA** | | | | | | | | |
| SalamandraTA-7b-instruct |  **33.64** | **54.49** |  59.03     |    **0.86** |         0.8      |     **0.75** |      **1.07** |         **1.6**  |
| MADLAD400-7B-mt             |  33.02     | 55.01     |  59.38     |    **0.86** |         **0.81** |     **0.75** |      1.18 |         1.79 |
| SalamandraTA-7b-base     |  32.75     | 55.78     |  **59.42** |    **0.86** |         **0.81** |     **0.75** |      1.17 |         1.63 |


<img src="./images/bleu_ca.png" alt="English" width="100%"/>

</details>

<details>
<summary>Galician evaluation</summary>

### Galician

This section presents the evaluation metrics for Galician translation tasks.


|                        |   Bleu↑ |   Ter↓ |   ChrF↑ |   Comet↑ |   Comet-kiwi↑ |   Bleurt↑ |   MetricX↓ |   MetricX-QE↓ |
|:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:|
| **GL-XX** | | | | | | | | |
| SalamandraTA-7b-instruct         |  **28.13** | **59.68** |  **56.94** |    **0.87** |         **0.85** |     **0.76** |      **1.08** |         **1.2**  |
| SalamandraTA-7b-base             |  27.47 | 61.39 |  **56.96** |    **0.87** |         0.82 |     0.76 |      1.23 |         1.29 |
| MADLAD400-7B-mt                     |  26.43 | 64.3  |  55.99 |    0.86 |         **0.85** |     0.76 |      1.35 |         2.06 |
| **XX-GL** | | | | | | | | |
| SalamandraTA-7b-instruct               |  **30.94** | **55.24** |  **57.69** |    **0.86** |         **0.85** |     **0.7**  |      **0.9**  |         **1.38** |
| SalamandraTA-7b-base                   |  28.22 | 59.52 |  56.28 |    0.85 |         0.82 |     0.69 |      1.27 |         1.78 |
| MADLAD400-7B-mt                           |  27.77 | 59.46 |  54.92 |    0.84 |         **0.85** |     0.67 |      1.42 |         2.72 |

<img src="./images/bleu_gl.png" alt="English" width="100%"/>

</details>

<details>
<summary>Basque evaluation</summary>
  
### Basque

This section presents the evaluation metrics for Basque translation tasks.



|                        |   Bleu↑ |   Ter↓ |   ChrF↑ |   Comet↑ |   Comet-kiwi↑ |   Bleurt↑ |   MetricX↓ |   MetricX-QE↓ |
|:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:|
| **EU-XX** | | | | | | | | |
| SalamandraTA-7b-instruct               |  **22.99** | **65.8**  |  52.06 |    **0.86** |         **0.84** |     **0.74** |      **1.13** |         **1.38** |
| SalamandraTA-7b-base                   |  22.87 | 67.38 |  **52.19** |    **0.86** |         0.79 |     **0.74** |      1.19 |         1.61 |
| MADLAD400-7B-mt                           |  21.26 | 69.75 |  49.8  |    0.85 |         0.82 |     0.72 |      1.54 |         2.71 |
| **XX-EU** | | | | | | | | |
| SalamandraTA-7b-instruct               |  **17.5**  | **73.13** |  54.67 |    **0.85** |         **0.83** |     **0.8**  |      **0.85** |         **1.03** |
| SalamandraTA-7b-base                   |  17.01 | 75.92 |  **55.22** |    **0.85** |         0.77 |     **0.8**  |      1.04 |         1.17 |
| MADLAD400-7B-mt                           |  13.64 | 85.01 |  50.96 |    0.82 |         0.8  |     0.78 |      2.09 |         3.58 |


<img src="./images/bleu_eu.png" alt="English" width="100%"/>

</details>

### Low-Resource Languages of Spain

The tables below summarize the performance metrics for English, Spanish, and Catalan to Asturian, Aranese and Aragonese compared 
against [Transducens/IbRo-nllb](https://huggingface.co/Transducens/IbRo-nllb) [(Galiano Jimenez, et al.)](https://aclanthology.org/2024.wmt-1.85/), 
[NLLB-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) ([Costa-jussà et al., 2022](https://arxiv.org/abs/2207.04672)) and [SalamandraTA-2B](https://huggingface.co/BSC-LT/salamandraTA-2B).

<details>
<summary>English evaluation</summary>
  
#### English-XX

|                        | Source   | Target   |   Bleu↑ |    Ter↓ |   ChrF↑ |
|:---------------------------------|:---------|:---------|-------:|-------:|-------:|
| SalamandraTA-7b-instruct               | en       | ast      |  **31.49** |  **54.01** |  **60.65** |
| SalamandraTA-7b-base                   | en       | ast      |  26.4      |  64.02 |  57.35 |
| nllb-200-3.3B                              | en       | ast      |  22.02     |  77.26 |  51.4  |
| Transducens/IbRo-nllb                  | en       | ast      |  20.56 |  63.92 |  53.32 |
| | | | | | |
| SalamandraTA-7b-instruct | en       | arn      |  **13.04** |  **87.13** |  **37.56** |
| SalamandraTA-7b-base                   | en       | arn      |   8.36 |  90.85 |  34.06 |
| Transducens/IbRo-nllb                  | en       | arn      |  7.63 |  89.36 | 33.88  |
| | | | | | |
| SalamandraTA-7b-instruct | en       | arg      |  **20.43** |  **65.62** |  **50.79** |
| SalamandraTA-7b-base                   | en       | arg      |  12.24 |  73.48 |  44.75 |
| Transducens/IbRo-nllb                  | en       | arg      |  14.07 |  70.37 |  46.89 |

</details>


<details>
<summary>Spanish evaluation</summary>
  
#### Spanish-XX

|                        | Source   | Target   |   Bleu↑ |    Ter↓ |   ChrF↑ |
|:---------------------------------|:---------|:---------|-------:|-------:|-------:|
| SalamandraTA-7b-instruct         | es       | ast      |  **21.28** |  **68.11** |  **52.73** |
| SalamandraTA-7b-base             | es       | ast      |  17.65 |  75.78 |  51.05 |
| Transducens/IbRo-nllb            | es       | ast      |  16.79	 |  76.36 |  50.89 |
| SalamandraTA-2B                   | es       | ast      |  16.68 |  77.29 |  49.46 |
| nllb-200-3.3B                        | es       | ast      |  11.85 | 100.86 |  40.27 |
| | | | | | |
| SalamandraTA-7b-base             | es       | arn      |  **29.19** |  **71.85** |  **49.42** |
| Transducens/IbRo-nllb             | es       | arn      |  28.45 |  72.56 | 49.28  |
| SalamandraTA-7b-instruct         | es       | arn      |  26.82 |  74.04 |  47.55 |
| SalamandraTA-2B                   | es       | arn      |  25.41 |  74.71 |  47.33 |
| | | | | | |
| Transducens/IbRo-nllb             | es       | arg      |  **59.75** |  **28.01** |  **78.73** |
| SalamandraTA-7b-base             | es       | arg      |  53.96 |  31.51 |  76.08 |
| SalamandraTA-7b-instruct         | es       | arg      |  47.54 |  36.57 |  72.38 |
| SalamandraTA-2B                   | es       | arg      |  44.57 |  37.93 |  71.32 |

</details>


<details>
<summary>Catalan evaluation</summary>

  
#### Catalan-XX


|                        | Source   | Target   |   Bleu↑ |    Ter↓ |   ChrF↑ |
|:---------------------------------|:---------|:---------|-------:|-------:|-------:|
| SalamandraTA-7b-instruct | ca       | ast      |  **27.86** |  **58.19** |  57.98 |
| SalamandraTA-7b-base                   | ca       | ast      |  26.11 |  63.63 |  **58.08** |
| SalamandraTA-2B                   | ca       | ast      |  25.32 |  62.59 |  55.98 |
| Transducens/IbRo-nllb            | ca       | ast      |  24.77 |  61.60 |  57.49 |
| nllb-200-3.3B                        | ca       | ast      |  17.17 |  91.47 |  45.83 |
| | | | | | |
| SalamandraTA-7b-base                   | ca       | arn      |  **17.77** |  **80.88** |  **42.12** |
| Transducens/IbRo-nllb                   | ca       | arn      |  17.51 |  81.18 |  41.91 |
| SalamandraTA-7b-instruct | ca       | arn      |  16.45 |  82.01 |  41.04 |
| SalamandraTA-2B                   | ca       | arn      |  15.37 |  82.76 |  40.53 |
| | | | | | |
| Transducens/IbRo-nllb                   | ca       | arg      |  **24.44** |  **60.79** |  **55.51** |
| SalamandraTA-7b-base                   | ca       | arg      |  22.53 |  62.37 |  54.32 |
| SalamandraTA-7b-instruct | ca       | arg      |  21.62 |  63.38 |  53.01 |
| SalamandraTA-2B                   | ca       | arg      |  18.6  |  65.82 |  51.21 |

</details>


### Gender Aware Translation

Below are the evaluation results for gender aware translation evaluated on the [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval?tab=readme-ov-file#mt-geneval) 
dataset ([Currey, A. et al.](https://github.com/amazon-science/machine-translation-gender-eval?tab=readme-ov-file#mt-geneval)). 
These have been calculated for translation from English into German, Spanish, French, Italian, Portuguese and Russian and are compared 
against [MADLAD400-7B-mt](https://huggingface.co/google/madlad400-7b-mt), [TowerInstruct-7B-v0.2](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2) 
and the SalamandraTA-7b-base model.
Evaluation was conducted using [MT-Lens](https://github.com/langtech-bsc/mt-evaluation) and is reported as accuracy computed using the accuracy metric 
provided with MT-GenEval.

<details>

|                        | Source   | Target   |   Masc |    Fem |   Pair |
|:---------------------------------|:---------|:---------|-------:|-------:|-------:|
| SalamandraTA-7b-instruct | en       | de      |  **0.883** | **0.883**  | **0.773** |
| SalamandraTA-7b-base     | en       | de      | 0.857 | 0.77 |  0.66 |
| MADLAD400-7B-mt             | en       | de      | 0.877 | 0.823 | 0.713  |
| TowerInstruct-7B-v0.2    | en       | de      |  0.863 | 0.84 | 0.727 |
| | | | | | |
| SalamandraTA-7b-instruct | en       | es      | 0.867  | **0.85**  |  **0.737** |
| SalamandraTA-7b-base     | en       | es      | **0.89** | 0.733 | 0.643  |
| MADLAD400-7B-mt             | en       | es      | 0.887 | 0.78 |  0.687 |
| TowerInstruct-7B-v0.2    | en       | es      | 0.85  | 0.823 | 0.693 |
| | | | | | |
| SalamandraTA-7b-instruct | en       | fr      | **0.9**  | 0.82  | **0.737** |
| SalamandraTA-7b-base     | en       | fr      | 0.8867  | 0.71 | 0.617  |
| MADLAD400-7B-mt             | en       | fr      | 0.873 | 0.777 |  0.663 |
| TowerInstruct-7B-v0.2    | en       | fr      | 0.88  | **0.823** | 0.717 |
| | | | | | |
| SalamandraTA-7b-instruct | en       | it      | 0.9  | **0.763**  | 0.683 |
| SalamandraTA-7b-base     | en       | it      | 0.893 | 0.593 |  0.513 |
| MADLAD400-7B-mt             | en       | it      | 0.907 | 0.663 |  0.597 |
| TowerInstruct-7B-v0.2    | en       | it      |  **0.947** | 0.747 | **0.713** |
| | | | | | |
| SalamandraTA-7b-instruct | en       | pt      | 0.92  | **0.77**  | **0.707** |
| SalamandraTA-7b-base     | en       | pt      | **0.923** | 0.65 | 0.597  |
| MADLAD400-7B-mt             | en       | pt      | **0.923** | 0.687 | 0.627  |
| TowerInstruct-7B-v0.2    | en       | pt      | 0.907  | 0.73 | 0.67 |
| | | | | | |
| SalamandraTA-7b-instruct | en       | ru      | **0.95**  |  **0.837** | **0.793** |
| SalamandraTA-7b-base     | en       | ru      | 0.933 | 0.713 |  0.653 |
| MADLAD400-7B-mt             | en       | ru      | 0.94 | 0.797 |  0.74 |
| TowerInstruct-7B-v0.2    | en       | ru      |  0.933 | 0.797 | 0.733 |

<img src="./images/geneval.png"/>

</details>

## Ethical Considerations and Limitations

Detailed information on the work done to examine the presence of unwanted social and cognitive biases in the base model can be found 
at [Salamandra-7B model card](https://huggingface.co/BSC-LT/salamandra-7b).
With regard to MT models, the only analysis related to bias which we have conducted is the MT-GenEval evaluation. 
No specific analysis has yet been carried out in order to evaluate potential biases or limitations in translation 
accuracy across different languages, dialects, or domains. However, we recognize the importance of identifying and addressing any harmful stereotypes, 
cultural inaccuracies, or systematic performance discrepancies that may arise in Machine Translation. As such, we plan to continue performing more analyses 
as we implement the necessary metrics and methods within our evaluation framework [MT-Lens](https://github.com/langtech-bsc/mt-evaluation).
Note that the model has only undergone preliminary instruction tuning. 
We urge developers to consider potential limitations and conduct safety testing and tuning tailored to their specific applications.

## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <langtech@bsc.es>.

### Copyright
Copyright(c) 2025 by Language Technologies Unit, Barcelona Supercomputing Center.

### Funding
This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/).

This work is funded by the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU 
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.

### Acknowledgements

The success of this project has been made possible thanks to the invaluable contributions of our partners in the [ILENIA Project](https://proyectoilenia.es/): 
[HiTZ](http://hitz.ehu.eus/es), and [CiTIUS](https://citius.gal/es/).
Their efforts have been instrumental in advancing our work, and we sincerely appreciate their help and support. 



### Disclaimer


### Disclaimer
Be aware that the model may contain biases or other unintended distortions. 
When third parties deploy systems or provide services based on this model, or use the model themselves, 
they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, 
including those governing the use of Artificial Intelligence.

The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)