Edit model card

just-nce

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0338
  • Able: {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 6}
  • Eading: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Ext: {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10}
  • Mage: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Ub heading: {'precision': 0.9090909090909091, 'recall': 0.625, 'f1': 0.7407407407407406, 'number': 16}
  • Overall Precision: 0.6571
  • Overall Recall: 0.575
  • Overall F1: 0.6133
  • Overall Accuracy: 0.68

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Able Eading Ext Mage Ub heading Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4724 14.29 100 1.0338 {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 6} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.9090909090909091, 'recall': 0.625, 'f1': 0.7407407407407406, 'number': 16} 0.6571 0.575 0.6133 0.68

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.