BauyrjanQ's picture
End of training
f065aeb
|
raw
history blame
2.53 kB
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-kazakh-speech2ner-ksc_t-16b-4ep
    results: []

wav2vec2-large-mms-1b-kazakh-speech2ner-ksc_t-16b-4ep

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2397
  • Wer: 0.3099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Wer
0.3934 0.22 2000 0.3610 0.3687
0.3361 0.43 4000 0.2983 0.3412
0.3211 0.65 6000 0.2779 0.3300
0.3146 0.87 8000 0.2685 0.3238
0.3104 1.09 10000 0.2613 0.3210
0.2965 1.3 12000 0.2571 0.3188
0.3004 1.52 14000 0.2531 0.3166
0.2889 1.74 16000 0.2504 0.3153
0.2955 1.96 18000 0.2476 0.3138
0.2869 2.17 20000 0.2465 0.3126
0.2855 2.39 22000 0.2443 0.3117
0.2927 2.61 24000 0.2431 0.3111
0.2789 2.83 26000 0.2421 0.3107
0.2854 3.04 28000 0.2412 0.3105
0.2918 3.26 30000 0.2404 0.3099
0.2768 3.48 32000 0.2401 0.3096
0.2771 3.69 34000 0.2398 0.3099
0.2733 3.91 36000 0.2397 0.3099

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3