ST2_modernbert-base_hazard_V1

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4784
  • F1: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 36
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss F1
2.5191 1.0 128 1.0456 0.7432
0.9471 2.0 256 0.7727 0.7980
0.5678 3.0 384 0.8717 0.8031
0.2555 4.0 512 0.7572 0.8172
0.1684 5.0 640 0.8652 0.8206
0.1207 6.0 768 0.8450 0.8357
0.1161 7.0 896 0.9799 0.8240
0.0479 8.0 1024 0.9729 0.8212
0.0508 9.0 1152 0.9321 0.8460
0.0255 10.0 1280 0.9720 0.8499
0.0222 11.0 1408 1.0322 0.8224
0.0242 12.0 1536 1.0043 0.8340
0.0138 13.0 1664 1.0457 0.8253
0.0149 14.0 1792 1.1048 0.8228
0.0092 15.0 1920 1.0876 0.8321
0.0023 16.0 2048 1.0608 0.8406
0.0088 17.0 2176 1.1299 0.8305
0.0048 18.0 2304 1.1019 0.8414
0.0064 19.0 2432 1.0774 0.8277
0.0033 20.0 2560 1.1586 0.8345
0.0071 21.0 2688 1.0852 0.8252
0.0104 22.0 2816 1.1648 0.8245
0.0136 23.0 2944 1.2453 0.8153
0.0105 24.0 3072 1.0781 0.8333
0.0341 25.0 3200 1.1619 0.8297
0.0342 26.0 3328 1.1759 0.8313
0.0296 27.0 3456 1.2133 0.8248
0.0196 28.0 3584 1.1874 0.8421
0.0186 29.0 3712 1.1718 0.8292
0.0094 30.0 3840 1.2452 0.8467
0.0076 31.0 3968 1.2893 0.8359
0.0038 32.0 4096 1.3181 0.8402
0.0027 33.0 4224 1.3386 0.8451
0.001 34.0 4352 1.3360 0.8445
0.0026 35.0 4480 1.3282 0.8424
0.0024 36.0 4608 1.3332 0.8470
0.0004 37.0 4736 1.3393 0.8496
0.0028 38.0 4864 1.3387 0.8496
0.0023 39.0 4992 1.3492 0.8469
0.0017 40.0 5120 1.3429 0.8496
0.0027 41.0 5248 1.3550 0.8518
0.0021 42.0 5376 1.3583 0.8499
0.0014 43.0 5504 1.3619 0.8466
0.0013 44.0 5632 1.3568 0.8469
0.0012 45.0 5760 1.3727 0.8466
0.0038 46.0 5888 1.3737 0.8448
0.0021 47.0 6016 1.3665 0.8490
0.0024 48.0 6144 1.3730 0.8438
0.002 49.0 6272 1.3639 0.8485
0.002 50.0 6400 1.3754 0.8455
0.0026 51.0 6528 1.3731 0.8469
0.0016 52.0 6656 1.3841 0.8445
0.0019 53.0 6784 1.3772 0.8435
0.0022 54.0 6912 1.3832 0.8484
0.0021 55.0 7040 1.3866 0.8419
0.0013 56.0 7168 1.3917 0.8405
0.0015 57.0 7296 1.3902 0.8444
0.0017 58.0 7424 1.3941 0.8457
0.0019 59.0 7552 1.3992 0.8380
0.0019 60.0 7680 1.3967 0.8459
0.0023 61.0 7808 1.3910 0.8408
0.0022 62.0 7936 1.4057 0.8417
0.0019 63.0 8064 1.4024 0.8462
0.0012 64.0 8192 1.4142 0.8437
0.0022 65.0 8320 1.3902 0.8417
0.0012 66.0 8448 1.4110 0.8409
0.0016 67.0 8576 1.4014 0.8402
0.0015 68.0 8704 1.4132 0.8395
0.0011 69.0 8832 1.4247 0.8369
0.0029 70.0 8960 1.4302 0.8440
0.001 71.0 9088 1.3837 0.8371
0.1169 72.0 9216 1.1830 0.8102
0.097 73.0 9344 1.1205 0.8271
0.059 74.0 9472 1.2308 0.8477
0.0139 75.0 9600 1.2471 0.8398
0.0106 76.0 9728 1.2684 0.8316
0.0018 77.0 9856 1.2728 0.8325
0.0014 78.0 9984 1.2775 0.8322
0.0017 79.0 10112 1.2850 0.8303
0.0013 80.0 10240 1.2844 0.8303
0.0015 81.0 10368 1.2923 0.8332
0.0022 82.0 10496 1.2924 0.8320
0.002 83.0 10624 1.2962 0.8339
0.0009 84.0 10752 1.2992 0.8339
0.0012 85.0 10880 1.3002 0.8339
0.0018 86.0 11008 1.3037 0.8339
0.0019 87.0 11136 1.3079 0.8323
0.0009 88.0 11264 1.3084 0.8323
0.002 89.0 11392 1.3105 0.8343
0.0017 90.0 11520 1.3118 0.8380
0.0012 91.0 11648 1.3124 0.8345
0.0022 92.0 11776 1.3147 0.8366
0.0017 93.0 11904 1.3192 0.8343
0.0015 94.0 12032 1.3197 0.8343
0.0019 95.0 12160 1.3164 0.8363
0.0013 96.0 12288 1.3225 0.8348
0.0016 97.0 12416 1.3221 0.8354
0.0014 98.0 12544 1.3242 0.8378
0.0014 99.0 12672 1.3255 0.8378
0.0014 100.0 12800 1.3271 0.8388
0.0017 101.0 12928 1.3282 0.8378
0.0017 102.0 13056 1.3317 0.8382
0.0015 103.0 13184 1.3328 0.8382
0.0015 104.0 13312 1.3317 0.8382
0.0017 105.0 13440 1.3333 0.8401
0.0021 106.0 13568 1.3365 0.8388
0.0011 107.0 13696 1.3397 0.8392
0.0017 108.0 13824 1.3391 0.8398
0.0007 109.0 13952 1.3383 0.8411
0.002 110.0 14080 1.3450 0.8408
0.0014 111.0 14208 1.3477 0.8408
0.002 112.0 14336 1.3461 0.8411
0.0007 113.0 14464 1.3513 0.8417
0.0017 114.0 14592 1.3512 0.8421
0.0013 115.0 14720 1.3513 0.8408
0.001 116.0 14848 1.3515 0.8397
0.0015 117.0 14976 1.3584 0.8394
0.0016 118.0 15104 1.3529 0.8421
0.0008 119.0 15232 1.3539 0.8417
0.0022 120.0 15360 1.3544 0.8444
0.0016 121.0 15488 1.3628 0.8419
0.002 122.0 15616 1.3633 0.8417
0.0014 123.0 15744 1.3661 0.8397
0.0016 124.0 15872 1.3688 0.8418
0.0016 125.0 16000 1.3660 0.8417
0.0012 126.0 16128 1.3665 0.8431
0.0016 127.0 16256 1.3702 0.8395
0.0016 128.0 16384 1.3827 0.8416
0.002 129.0 16512 1.3598 0.8413
0.0011 130.0 16640 1.3711 0.8437
0.0014 131.0 16768 1.3608 0.8465
0.0023 132.0 16896 1.3945 0.8418
0.0015 133.0 17024 1.3688 0.8465
0.0011 134.0 17152 1.3865 0.8415
0.002 135.0 17280 1.3798 0.8435
0.0014 136.0 17408 1.3950 0.8436
0.0016 137.0 17536 1.3800 0.8435
0.0009 138.0 17664 1.4076 0.8415
0.0023 139.0 17792 1.3928 0.8436
0.0012 140.0 17920 1.3917 0.8412
0.0013 141.0 18048 1.3954 0.8436
0.0021 142.0 18176 1.3990 0.8436
0.0014 143.0 18304 1.3970 0.8436
0.001 144.0 18432 1.3982 0.8436
0.0017 145.0 18560 1.4059 0.8436
0.0016 146.0 18688 1.4020 0.8436
0.0015 147.0 18816 1.4094 0.8436
0.0013 148.0 18944 1.3975 0.8453
0.0011 149.0 19072 1.4131 0.8436
0.0018 150.0 19200 1.4027 0.8436
0.0013 151.0 19328 1.4186 0.8436
0.0006 152.0 19456 1.4225 0.8436
0.0027 153.0 19584 1.4087 0.8413
0.0013 154.0 19712 1.4294 0.8438
0.0018 155.0 19840 1.4011 0.8438
0.0009 156.0 19968 1.4305 0.8444
0.0016 157.0 20096 1.3805 0.8444
0.0013 158.0 20224 1.4375 0.8436
0.001 159.0 20352 1.4288 0.8436
0.0022 160.0 20480 1.4348 0.8438
0.001 161.0 20608 1.4338 0.8436
0.0015 162.0 20736 1.4358 0.8436
0.0019 163.0 20864 1.4315 0.8436
0.0009 164.0 20992 1.4362 0.8436
0.0017 165.0 21120 1.4363 0.8436
0.0006 166.0 21248 1.4398 0.8436
0.0018 167.0 21376 1.4364 0.8436
0.0017 168.0 21504 1.4435 0.8438
0.0015 169.0 21632 1.4482 0.8436
0.001 170.0 21760 1.4436 0.8436
0.0016 171.0 21888 1.4507 0.8436
0.0012 172.0 22016 1.4470 0.8436
0.001 173.0 22144 1.4505 0.8436
0.0017 174.0 22272 1.4478 0.8436
0.0011 175.0 22400 1.4470 0.8436
0.0013 176.0 22528 1.4537 0.8436
0.0012 177.0 22656 1.4564 0.8436
0.0015 178.0 22784 1.4572 0.8436
0.0015 179.0 22912 1.4587 0.8436
0.001 180.0 23040 1.4622 0.8436
0.0014 181.0 23168 1.4619 0.8436
0.0016 182.0 23296 1.4650 0.8436
0.0008 183.0 23424 1.4695 0.8438
0.0016 184.0 23552 1.4658 0.8438
0.0008 185.0 23680 1.4687 0.8436
0.0016 186.0 23808 1.4716 0.8436
0.0012 187.0 23936 1.4747 0.8436
0.001 188.0 24064 1.4733 0.8436
0.0014 189.0 24192 1.4756 0.8438
0.0012 190.0 24320 1.4786 0.8438
0.0012 191.0 24448 1.4776 0.8436
0.0008 192.0 24576 1.4775 0.8436
0.0016 193.0 24704 1.4768 0.8436
0.0012 194.0 24832 1.4759 0.8438
0.0012 195.0 24960 1.4774 0.8438
0.0014 196.0 25088 1.4777 0.8438
0.0014 197.0 25216 1.4794 0.8436
0.001 198.0 25344 1.4799 0.8436
0.0012 199.0 25472 1.4787 0.8438
0.0012 200.0 25600 1.4784 0.8438

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for BenPhan/ST2_modernbert-base_hazard_V1

Finetuned
(226)
this model