layoutlm-funsd1 / README.md
Benedict-L's picture
End of training
62cbb70 verified
|
raw
history blame
7.11 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd1
    results: []

layoutlm-funsd1

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6576
  • Answer: {'precision': 0.6760869565217391, 'recall': 0.7688504326328801, 'f1': 0.719491035280509, 'number': 809}
  • Header: {'precision': 0.29473684210526313, 'recall': 0.23529411764705882, 'f1': 0.2616822429906542, 'number': 119}
  • Question: {'precision': 0.7385398981324278, 'recall': 0.8169014084507042, 'f1': 0.7757467677218011, 'number': 1065}
  • Overall Precision: 0.6931
  • Overall Recall: 0.7627
  • Overall F1: 0.7262
  • Overall Accuracy: 0.7966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8473 1.0 10 1.5928 {'precision': 0.018163471241170535, 'recall': 0.022249690976514216, 'f1': 0.020000000000000004, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22706209453197404, 'recall': 0.2300469483568075, 'f1': 0.228544776119403, 'number': 1065} 0.1271 0.1320 0.1295 0.3941
1.4704 2.0 20 1.2787 {'precision': 0.11602870813397129, 'recall': 0.11990111248454882, 'f1': 0.11793313069908813, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4026946107784431, 'recall': 0.5051643192488263, 'f1': 0.4481466055810079, 'number': 1065} 0.2924 0.3186 0.3049 0.5625
1.1341 3.0 30 1.0026 {'precision': 0.3333333333333333, 'recall': 0.33127317676143386, 'f1': 0.33230006199628026, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5989804587935429, 'recall': 0.6619718309859155, 'f1': 0.6289027653880465, 'number': 1065} 0.4831 0.4882 0.4857 0.6604
0.8967 4.0 40 0.8387 {'precision': 0.571563981042654, 'recall': 0.7453646477132262, 'f1': 0.6469957081545066, 'number': 809} {'precision': 0.06976744186046512, 'recall': 0.025210084033613446, 'f1': 0.037037037037037035, 'number': 119} {'precision': 0.6548748921484038, 'recall': 0.7126760563380282, 'f1': 0.6825539568345323, 'number': 1065} 0.6048 0.6849 0.6424 0.7382
0.723 5.0 50 0.7520 {'precision': 0.5984174085064293, 'recall': 0.7478368355995055, 'f1': 0.6648351648351648, 'number': 809} {'precision': 0.1935483870967742, 'recall': 0.10084033613445378, 'f1': 0.13259668508287292, 'number': 119} {'precision': 0.6901041666666666, 'recall': 0.7464788732394366, 'f1': 0.7171853856562922, 'number': 1065} 0.6346 0.7085 0.6695 0.7621
0.6196 6.0 60 0.7171 {'precision': 0.6231003039513677, 'recall': 0.7601977750309024, 'f1': 0.6848552338530067, 'number': 809} {'precision': 0.2125, 'recall': 0.14285714285714285, 'f1': 0.1708542713567839, 'number': 119} {'precision': 0.7221238938053097, 'recall': 0.7661971830985915, 'f1': 0.743507972665148, 'number': 1065} 0.6591 0.7265 0.6912 0.7734
0.5747 7.0 70 0.6993 {'precision': 0.6506410256410257, 'recall': 0.7527812113720643, 'f1': 0.6979942693409743, 'number': 809} {'precision': 0.2558139534883721, 'recall': 0.18487394957983194, 'f1': 0.21463414634146344, 'number': 119} {'precision': 0.6894060995184591, 'recall': 0.8065727699530516, 'f1': 0.7434011250540891, 'number': 1065} 0.6570 0.7476 0.6994 0.7841
0.5292 8.0 80 0.6785 {'precision': 0.6484536082474227, 'recall': 0.7775030902348579, 'f1': 0.7071388420460932, 'number': 809} {'precision': 0.29069767441860467, 'recall': 0.21008403361344538, 'f1': 0.24390243902439027, 'number': 119} {'precision': 0.7459893048128342, 'recall': 0.7859154929577464, 'f1': 0.7654320987654322, 'number': 1065} 0.6846 0.7481 0.7149 0.7893
0.4862 9.0 90 0.6637 {'precision': 0.658008658008658, 'recall': 0.7515451174289246, 'f1': 0.7016733987305251, 'number': 809} {'precision': 0.28125, 'recall': 0.226890756302521, 'f1': 0.2511627906976744, 'number': 119} {'precision': 0.7287853577371048, 'recall': 0.8225352112676056, 'f1': 0.7728275253639171, 'number': 1065} 0.6800 0.7582 0.7170 0.7931
0.4795 10.0 100 0.6576 {'precision': 0.6760869565217391, 'recall': 0.7688504326328801, 'f1': 0.719491035280509, 'number': 809} {'precision': 0.29473684210526313, 'recall': 0.23529411764705882, 'f1': 0.2616822429906542, 'number': 119} {'precision': 0.7385398981324278, 'recall': 0.8169014084507042, 'f1': 0.7757467677218011, 'number': 1065} 0.6931 0.7627 0.7262 0.7966

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1