layoutlm-funsd2 / README.md
Benedict-L's picture
End of training
ffd9c00 verified
|
raw
history blame
8.03 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd2
    results: []

layoutlm-funsd2

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6614
  • Answer: {'precision': 0.6683778234086243, 'recall': 0.8046971569839307, 'f1': 0.7302299495232752, 'number': 809}
  • Header: {'precision': 0.3130434782608696, 'recall': 0.3025210084033613, 'f1': 0.3076923076923077, 'number': 119}
  • Question: {'precision': 0.7667814113597247, 'recall': 0.8366197183098592, 'f1': 0.8001796138302649, 'number': 1065}
  • Overall Precision: 0.7010
  • Overall Recall: 0.7918
  • Overall F1: 0.7436
  • Overall Accuracy: 0.8029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8071 1.0 10 1.5850 {'precision': 0.011918951132300357, 'recall': 0.012360939431396786, 'f1': 0.012135922330097087, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.17111459968602827, 'recall': 0.10234741784037558, 'f1': 0.1280846063454759, 'number': 1065} 0.0806 0.0597 0.0686 0.3795
1.4934 2.0 20 1.2707 {'precision': 0.09924812030075188, 'recall': 0.0815822002472188, 'f1': 0.08955223880597016, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4546952224052718, 'recall': 0.5183098591549296, 'f1': 0.484422992540588, 'number': 1065} 0.3289 0.3101 0.3192 0.5753
1.1823 3.0 30 0.9970 {'precision': 0.4033214709371293, 'recall': 0.42027194066749074, 'f1': 0.4116222760290557, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5919540229885057, 'recall': 0.6769953051643193, 'f1': 0.6316250547525186, 'number': 1065} 0.5106 0.5324 0.5212 0.6915
0.9185 4.0 40 0.8213 {'precision': 0.6075156576200418, 'recall': 0.7194066749072929, 'f1': 0.6587436332767402, 'number': 809} {'precision': 0.05128205128205128, 'recall': 0.01680672268907563, 'f1': 0.025316455696202535, 'number': 119} {'precision': 0.6559048428207307, 'recall': 0.7248826291079812, 'f1': 0.6886708296164139, 'number': 1065} 0.6237 0.6804 0.6508 0.7467
0.7233 5.0 50 0.7353 {'precision': 0.638974358974359, 'recall': 0.7700865265760197, 'f1': 0.6984304932735426, 'number': 809} {'precision': 0.22093023255813954, 'recall': 0.15966386554621848, 'f1': 0.18536585365853656, 'number': 119} {'precision': 0.6809716599190283, 'recall': 0.7896713615023474, 'f1': 0.731304347826087, 'number': 1065} 0.6459 0.7441 0.6915 0.7794
0.6262 6.0 60 0.7036 {'precision': 0.632512315270936, 'recall': 0.7935723114956736, 'f1': 0.7039473684210525, 'number': 809} {'precision': 0.24324324324324326, 'recall': 0.15126050420168066, 'f1': 0.18652849740932642, 'number': 119} {'precision': 0.7235345581802275, 'recall': 0.7765258215962442, 'f1': 0.7490942028985508, 'number': 1065} 0.6662 0.7461 0.7039 0.7818
0.5552 7.0 70 0.6694 {'precision': 0.6639089968976215, 'recall': 0.7935723114956736, 'f1': 0.722972972972973, 'number': 809} {'precision': 0.24770642201834864, 'recall': 0.226890756302521, 'f1': 0.23684210526315788, 'number': 119} {'precision': 0.730999146029035, 'recall': 0.8037558685446009, 'f1': 0.7656529516994633, 'number': 1065} 0.6787 0.7652 0.7193 0.7913
0.5016 8.0 80 0.6598 {'precision': 0.6592517694641051, 'recall': 0.8059332509270705, 'f1': 0.7252502780867631, 'number': 809} {'precision': 0.24324324324324326, 'recall': 0.226890756302521, 'f1': 0.23478260869565218, 'number': 119} {'precision': 0.7482817869415808, 'recall': 0.8178403755868544, 'f1': 0.781516375056079, 'number': 1065} 0.6846 0.7777 0.7282 0.7931
0.4496 9.0 90 0.6561 {'precision': 0.6663265306122449, 'recall': 0.8071693448702101, 'f1': 0.7300167691447736, 'number': 809} {'precision': 0.2743362831858407, 'recall': 0.2605042016806723, 'f1': 0.26724137931034486, 'number': 119} {'precision': 0.7584708948740226, 'recall': 0.819718309859155, 'f1': 0.7879061371841156, 'number': 1065} 0.6939 0.7812 0.7350 0.7982
0.4481 10.0 100 0.6633 {'precision': 0.6711340206185566, 'recall': 0.8046971569839307, 'f1': 0.7318718381112984, 'number': 809} {'precision': 0.29357798165137616, 'recall': 0.2689075630252101, 'f1': 0.28070175438596495, 'number': 119} {'precision': 0.7640350877192983, 'recall': 0.8178403755868544, 'f1': 0.7900226757369614, 'number': 1065} 0.7003 0.7797 0.7379 0.7987
0.4012 11.0 110 0.6624 {'precision': 0.6625766871165644, 'recall': 0.8009888751545118, 'f1': 0.7252378287632905, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3025210084033613, 'f1': 0.3171806167400881, 'number': 119} {'precision': 0.7696969696969697, 'recall': 0.8347417840375587, 'f1': 0.8009009009009008, 'number': 1065} 0.7019 0.7893 0.7430 0.8074
0.4065 12.0 120 0.6614 {'precision': 0.6683778234086243, 'recall': 0.8046971569839307, 'f1': 0.7302299495232752, 'number': 809} {'precision': 0.3130434782608696, 'recall': 0.3025210084033613, 'f1': 0.3076923076923077, 'number': 119} {'precision': 0.7667814113597247, 'recall': 0.8366197183098592, 'f1': 0.8001796138302649, 'number': 1065} 0.7010 0.7918 0.7436 0.8029

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1