Edit model card

NLPGroupProject-Finetune-DistilBert

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1391
  • Accuracy: 0.723

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.25 250 0.9720 0.69
0.9562 0.5 500 0.8417 0.707
0.9562 0.75 750 0.7335 0.73
0.8908 1.0 1000 0.7306 0.739
0.8908 1.25 1250 0.7490 0.721
0.646 1.5 1500 0.7560 0.738
0.646 1.75 1750 0.7759 0.73
0.6244 2.0 2000 0.8180 0.723
0.6244 2.25 2250 1.0023 0.722
0.359 2.5 2500 1.0590 0.728
0.359 2.75 2750 1.0733 0.723
0.3716 3.0 3000 1.1391 0.723

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
67M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for BenjaminTT/NLPGroupProject-Finetune-DistilBert

Finetuned
(6632)
this model