Berly00's picture
End of training
bd2ea08 verified
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper small es - m1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: google/fleurs
          config: es_419
          split: None
          args: 'config: es_419, split: test, train'
        metrics:
          - name: Wer
            type: wer
            value: 7.583182873355687

Whisper small es - m1

This model is a fine-tuned version of openai/whisper-small on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2369
  • Wer: 7.5832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6526 2.8571 500 0.1860 7.4972
0.321 5.7143 1000 0.2052 7.2866
0.0887 8.5714 1500 0.2237 7.3639
0.0429 11.4286 2000 0.2327 7.5144
0.0285 14.2857 2500 0.2369 7.5832

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1