|
--- |
|
library_name: transformers |
|
license: bsd-3-clause |
|
base_model: MIT/ast-finetuned-audioset-10-10-0.4593 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: romanian-dialects |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# romanian-dialects |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6475 |
|
- Accuracy: 0.7852 |
|
- Precision: 0.7944 |
|
- Recall: 0.7944 |
|
- F1: 0.7901 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 14 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.343 | 1.0 | 217 | 1.3967 | 0.4088 | 0.2294 | 0.3723 | 0.2676 | |
|
| 1.2531 | 2.0 | 434 | 1.0872 | 0.5150 | 0.6858 | 0.4909 | 0.4907 | |
|
| 1.0475 | 3.0 | 651 | 1.0740 | 0.5219 | 0.6920 | 0.5005 | 0.4970 | |
|
| 0.961 | 4.0 | 868 | 0.8763 | 0.6467 | 0.6808 | 0.6504 | 0.6587 | |
|
| 0.9544 | 5.0 | 1085 | 0.9147 | 0.6351 | 0.6712 | 0.6401 | 0.6220 | |
|
| 0.9991 | 6.0 | 1302 | 0.8161 | 0.6882 | 0.7471 | 0.6808 | 0.6952 | |
|
| 0.7222 | 7.0 | 1519 | 0.7405 | 0.7044 | 0.7430 | 0.7117 | 0.7196 | |
|
| 0.8498 | 8.0 | 1736 | 0.6856 | 0.7136 | 0.7309 | 0.7267 | 0.7262 | |
|
| 0.6647 | 9.0 | 1953 | 0.6642 | 0.7529 | 0.7772 | 0.7553 | 0.7602 | |
|
| 0.7179 | 10.0 | 2170 | 0.7459 | 0.7367 | 0.7712 | 0.7570 | 0.7483 | |
|
| 0.6257 | 11.0 | 2387 | 0.6373 | 0.7460 | 0.7710 | 0.7496 | 0.7570 | |
|
| 0.5433 | 12.0 | 2604 | 0.6549 | 0.7667 | 0.7744 | 0.7802 | 0.7738 | |
|
| 0.3504 | 13.0 | 2821 | 0.6475 | 0.7852 | 0.7944 | 0.7944 | 0.7901 | |
|
| 0.5599 | 14.0 | 3038 | 0.6033 | 0.7783 | 0.7831 | 0.7822 | 0.7819 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|