segformer-b0-scene-parse-150_model
This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:
- Loss: 5.0249
- Mean Iou: 0.0041
- Mean Accuracy: 0.0306
- Overall Accuracy: 0.0692
- Per Category Iou: [0.05825561604841198, 0.015487725611567154, 0.026107263222142612, 0.00813373555419177, 0.0, 0.12167228361679337, 0.16333134809296432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.006476892080639778, 0.0, 0.014400908574673481, 0.0, 0.0, 0.0, 0.0002147366612743905, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0]
- Per Category Accuracy: [0.3219181042102906, 0.017186283454261462, 0.057861058178652926, 0.008465122973678055, 0.0, 0.28077288278647755, 0.6574195962143362, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.013555814254300866, 0.0, 0.1107907383136741, nan, 0.0, 0.0, 0.0002147612570692247, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
4.5667 | 1.0 | 20 | 5.0249 | 0.0041 | 0.0306 | 0.0692 | [0.05825561604841198, 0.015487725611567154, 0.026107263222142612, 0.00813373555419177, 0.0, 0.12167228361679337, 0.16333134809296432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.006476892080639778, 0.0, 0.014400908574673481, 0.0, 0.0, 0.0, 0.0002147366612743905, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0] | [0.3219181042102906, 0.017186283454261462, 0.057861058178652926, 0.008465122973678055, 0.0, 0.28077288278647755, 0.6574195962143362, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.013555814254300866, 0.0, 0.1107907383136741, nan, 0.0, 0.0, 0.0002147612570692247, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan] |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
- Downloads last month
- 11
Model tree for BhavanaMalla/segformer-b0-scene-parse-150_model
Base model
nvidia/mit-b0