|
""" |
|
This file is very long and growing, but it was decided to not split it yet, as |
|
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989 |
|
|
|
Instead of splitting it was decided to define sections here: |
|
- Configuration / Settings |
|
- Autouse fixtures |
|
- Common arguments |
|
- Missing values & co. |
|
- Classes |
|
- Indices |
|
- Series' |
|
- DataFrames |
|
- Operators & Operations |
|
- Data sets/files |
|
- Time zones |
|
- Dtypes |
|
- Misc |
|
""" |
|
from __future__ import annotations |
|
|
|
from collections import abc |
|
from datetime import ( |
|
date, |
|
datetime, |
|
time, |
|
timedelta, |
|
timezone, |
|
) |
|
from decimal import Decimal |
|
import operator |
|
import os |
|
from typing import ( |
|
TYPE_CHECKING, |
|
Callable, |
|
) |
|
|
|
from dateutil.tz import ( |
|
tzlocal, |
|
tzutc, |
|
) |
|
import hypothesis |
|
from hypothesis import strategies as st |
|
import numpy as np |
|
import pytest |
|
from pytz import ( |
|
FixedOffset, |
|
utc, |
|
) |
|
|
|
from pandas._config.config import _get_option |
|
|
|
import pandas.util._test_decorators as td |
|
|
|
from pandas.core.dtypes.dtypes import ( |
|
DatetimeTZDtype, |
|
IntervalDtype, |
|
) |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
CategoricalIndex, |
|
DataFrame, |
|
Interval, |
|
IntervalIndex, |
|
Period, |
|
RangeIndex, |
|
Series, |
|
Timedelta, |
|
Timestamp, |
|
date_range, |
|
period_range, |
|
timedelta_range, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core import ops |
|
from pandas.core.indexes.api import ( |
|
Index, |
|
MultiIndex, |
|
) |
|
from pandas.util.version import Version |
|
|
|
if TYPE_CHECKING: |
|
from collections.abc import ( |
|
Hashable, |
|
Iterator, |
|
) |
|
|
|
try: |
|
import pyarrow as pa |
|
except ImportError: |
|
has_pyarrow = False |
|
else: |
|
del pa |
|
has_pyarrow = True |
|
|
|
import zoneinfo |
|
|
|
try: |
|
zoneinfo.ZoneInfo("UTC") |
|
except zoneinfo.ZoneInfoNotFoundError: |
|
zoneinfo = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pytest_addoption(parser) -> None: |
|
parser.addoption( |
|
"--no-strict-data-files", |
|
action="store_false", |
|
help="Don't fail if a test is skipped for missing data file.", |
|
) |
|
|
|
|
|
def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None: |
|
"""Ignore doctest warning. |
|
|
|
Parameters |
|
---------- |
|
item : pytest.Item |
|
pytest test item. |
|
path : str |
|
Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A |
|
warning will be filtered when item.name ends with in given path. So it is |
|
sufficient to specify e.g. "DataFrame.append". |
|
message : str |
|
Message to be filtered. |
|
""" |
|
if item.name.endswith(path): |
|
item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}")) |
|
|
|
|
|
def pytest_collection_modifyitems(items, config) -> None: |
|
is_doctest = config.getoption("--doctest-modules") or config.getoption( |
|
"--doctest-cython", default=False |
|
) |
|
|
|
|
|
|
|
ignored_doctest_warnings = [ |
|
("is_int64_dtype", "is_int64_dtype is deprecated"), |
|
("is_interval_dtype", "is_interval_dtype is deprecated"), |
|
("is_period_dtype", "is_period_dtype is deprecated"), |
|
("is_datetime64tz_dtype", "is_datetime64tz_dtype is deprecated"), |
|
("is_categorical_dtype", "is_categorical_dtype is deprecated"), |
|
("is_sparse", "is_sparse is deprecated"), |
|
("DataFrameGroupBy.fillna", "DataFrameGroupBy.fillna is deprecated"), |
|
("NDFrame.replace", "The 'method' keyword"), |
|
("NDFrame.replace", "Series.replace without 'value'"), |
|
("NDFrame.clip", "Downcasting behavior in Series and DataFrame methods"), |
|
("Series.idxmin", "The behavior of Series.idxmin"), |
|
("Series.idxmax", "The behavior of Series.idxmax"), |
|
("SeriesGroupBy.fillna", "SeriesGroupBy.fillna is deprecated"), |
|
("SeriesGroupBy.idxmin", "The behavior of Series.idxmin"), |
|
("SeriesGroupBy.idxmax", "The behavior of Series.idxmax"), |
|
|
|
("missing.mask_zero_div_zero", "divide by zero encountered"), |
|
( |
|
"to_pydatetime", |
|
"The behavior of DatetimeProperties.to_pydatetime is deprecated", |
|
), |
|
( |
|
"pandas.core.generic.NDFrame.bool", |
|
"(Series|DataFrame).bool is now deprecated and will be removed " |
|
"in future version of pandas", |
|
), |
|
( |
|
"pandas.core.generic.NDFrame.first", |
|
"first is deprecated and will be removed in a future version. " |
|
"Please create a mask and filter using `.loc` instead", |
|
), |
|
( |
|
"Resampler.fillna", |
|
"DatetimeIndexResampler.fillna is deprecated", |
|
), |
|
( |
|
"DataFrameGroupBy.fillna", |
|
"DataFrameGroupBy.fillna with 'method' is deprecated", |
|
), |
|
( |
|
"DataFrameGroupBy.fillna", |
|
"DataFrame.fillna with 'method' is deprecated", |
|
), |
|
("read_parquet", "Passing a BlockManager to DataFrame is deprecated"), |
|
] |
|
|
|
if is_doctest: |
|
for item in items: |
|
for path, message in ignored_doctest_warnings: |
|
ignore_doctest_warning(item, path, message) |
|
|
|
|
|
hypothesis_health_checks = [hypothesis.HealthCheck.too_slow] |
|
if Version(hypothesis.__version__) >= Version("6.83.2"): |
|
hypothesis_health_checks.append(hypothesis.HealthCheck.differing_executors) |
|
|
|
|
|
hypothesis.settings.register_profile( |
|
"ci", |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deadline=None, |
|
suppress_health_check=tuple(hypothesis_health_checks), |
|
) |
|
hypothesis.settings.load_profile("ci") |
|
|
|
|
|
|
|
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split(): |
|
cls = getattr(pd.tseries.offsets, name) |
|
st.register_type_strategy( |
|
cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans()) |
|
) |
|
|
|
for name in "YearBegin YearEnd BYearBegin BYearEnd".split(): |
|
cls = getattr(pd.tseries.offsets, name) |
|
st.register_type_strategy( |
|
cls, |
|
st.builds( |
|
cls, |
|
n=st.integers(-5, 5), |
|
normalize=st.booleans(), |
|
month=st.integers(min_value=1, max_value=12), |
|
), |
|
) |
|
|
|
for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split(): |
|
cls = getattr(pd.tseries.offsets, name) |
|
st.register_type_strategy( |
|
cls, |
|
st.builds( |
|
cls, |
|
n=st.integers(-24, 24), |
|
normalize=st.booleans(), |
|
startingMonth=st.integers(min_value=1, max_value=12), |
|
), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(autouse=True) |
|
def add_doctest_imports(doctest_namespace) -> None: |
|
""" |
|
Make `np` and `pd` names available for doctests. |
|
""" |
|
doctest_namespace["np"] = np |
|
doctest_namespace["pd"] = pd |
|
|
|
|
|
@pytest.fixture(autouse=True) |
|
def configure_tests() -> None: |
|
""" |
|
Configure settings for all tests and test modules. |
|
""" |
|
pd.set_option("chained_assignment", "raise") |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}") |
|
def axis(request): |
|
""" |
|
Fixture for returning the axis numbers of a DataFrame. |
|
""" |
|
return request.param |
|
|
|
|
|
axis_frame = axis |
|
|
|
|
|
@pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}") |
|
def axis_1(request): |
|
""" |
|
Fixture for returning aliases of axis 1 of a DataFrame. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[True, False, None]) |
|
def observed(request): |
|
""" |
|
Pass in the observed keyword to groupby for [True, False] |
|
This indicates whether categoricals should return values for |
|
values which are not in the grouper [False / None], or only values which |
|
appear in the grouper [True]. [None] is supported for future compatibility |
|
if we decide to change the default (and would need to warn if this |
|
parameter is not passed). |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[True, False, None]) |
|
def ordered(request): |
|
""" |
|
Boolean 'ordered' parameter for Categorical. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[True, False]) |
|
def skipna(request): |
|
""" |
|
Boolean 'skipna' parameter. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["first", "last", False]) |
|
def keep(request): |
|
""" |
|
Valid values for the 'keep' parameter used in |
|
.duplicated or .drop_duplicates |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["both", "neither", "left", "right"]) |
|
def inclusive_endpoints_fixture(request): |
|
""" |
|
Fixture for trying all interval 'inclusive' parameters. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"]) |
|
def closed(request): |
|
""" |
|
Fixture for trying all interval closed parameters. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"]) |
|
def other_closed(request): |
|
""" |
|
Secondary closed fixture to allow parametrizing over all pairs of closed. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
None, |
|
"gzip", |
|
"bz2", |
|
"zip", |
|
"xz", |
|
"tar", |
|
pytest.param("zstd", marks=td.skip_if_no("zstandard")), |
|
] |
|
) |
|
def compression(request): |
|
""" |
|
Fixture for trying common compression types in compression tests. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
"gzip", |
|
"bz2", |
|
"zip", |
|
"xz", |
|
"tar", |
|
pytest.param("zstd", marks=td.skip_if_no("zstandard")), |
|
] |
|
) |
|
def compression_only(request): |
|
""" |
|
Fixture for trying common compression types in compression tests excluding |
|
uncompressed case. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[True, False]) |
|
def writable(request): |
|
""" |
|
Fixture that an array is writable. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["inner", "outer", "left", "right"]) |
|
def join_type(request): |
|
""" |
|
Fixture for trying all types of join operations. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["nlargest", "nsmallest"]) |
|
def nselect_method(request): |
|
""" |
|
Fixture for trying all nselect methods. |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__) |
|
def nulls_fixture(request): |
|
""" |
|
Fixture for each null type in pandas. |
|
""" |
|
return request.param |
|
|
|
|
|
nulls_fixture2 = nulls_fixture |
|
|
|
|
|
@pytest.fixture(params=[None, np.nan, pd.NaT]) |
|
def unique_nulls_fixture(request): |
|
""" |
|
Fixture for each null type in pandas, each null type exactly once. |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
unique_nulls_fixture2 = unique_nulls_fixture |
|
|
|
|
|
@pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__) |
|
def np_nat_fixture(request): |
|
""" |
|
Fixture for each NaT type in numpy. |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
np_nat_fixture2 = np_nat_fixture |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(params=[DataFrame, Series]) |
|
def frame_or_series(request): |
|
""" |
|
Fixture to parametrize over DataFrame and Series. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[Index, Series], ids=["index", "series"]) |
|
def index_or_series(request): |
|
""" |
|
Fixture to parametrize over Index and Series, made necessary by a mypy |
|
bug, giving an error: |
|
|
|
List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]" |
|
|
|
See GH#29725 |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
index_or_series2 = index_or_series |
|
|
|
|
|
@pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"]) |
|
def index_or_series_or_array(request): |
|
""" |
|
Fixture to parametrize over Index, Series, and ExtensionArray |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__) |
|
def box_with_array(request): |
|
""" |
|
Fixture to test behavior for Index, Series, DataFrame, and pandas Array |
|
classes |
|
""" |
|
return request.param |
|
|
|
|
|
box_with_array2 = box_with_array |
|
|
|
|
|
@pytest.fixture |
|
def dict_subclass() -> type[dict]: |
|
""" |
|
Fixture for a dictionary subclass. |
|
""" |
|
|
|
class TestSubDict(dict): |
|
def __init__(self, *args, **kwargs) -> None: |
|
dict.__init__(self, *args, **kwargs) |
|
|
|
return TestSubDict |
|
|
|
|
|
@pytest.fixture |
|
def non_dict_mapping_subclass() -> type[abc.Mapping]: |
|
""" |
|
Fixture for a non-mapping dictionary subclass. |
|
""" |
|
|
|
class TestNonDictMapping(abc.Mapping): |
|
def __init__(self, underlying_dict) -> None: |
|
self._data = underlying_dict |
|
|
|
def __getitem__(self, key): |
|
return self._data.__getitem__(key) |
|
|
|
def __iter__(self) -> Iterator: |
|
return self._data.__iter__() |
|
|
|
def __len__(self) -> int: |
|
return self._data.__len__() |
|
|
|
return TestNonDictMapping |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
def multiindex_year_month_day_dataframe_random_data(): |
|
""" |
|
DataFrame with 3 level MultiIndex (year, month, day) covering |
|
first 100 business days from 2000-01-01 with random data |
|
""" |
|
tdf = DataFrame( |
|
np.random.default_rng(2).standard_normal((100, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=100, freq="B"), |
|
) |
|
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() |
|
|
|
ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels]) |
|
ymd.index.set_names(["year", "month", "day"], inplace=True) |
|
return ymd |
|
|
|
|
|
@pytest.fixture |
|
def lexsorted_two_level_string_multiindex() -> MultiIndex: |
|
""" |
|
2-level MultiIndex, lexsorted, with string names. |
|
""" |
|
return MultiIndex( |
|
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], |
|
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], |
|
names=["first", "second"], |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def multiindex_dataframe_random_data( |
|
lexsorted_two_level_string_multiindex, |
|
) -> DataFrame: |
|
"""DataFrame with 2 level MultiIndex with random data""" |
|
index = lexsorted_two_level_string_multiindex |
|
return DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 3)), |
|
index=index, |
|
columns=Index(["A", "B", "C"], name="exp"), |
|
) |
|
|
|
|
|
def _create_multiindex(): |
|
""" |
|
MultiIndex used to test the general functionality of this object |
|
""" |
|
|
|
|
|
major_axis = Index(["foo", "bar", "baz", "qux"]) |
|
minor_axis = Index(["one", "two"]) |
|
|
|
major_codes = np.array([0, 0, 1, 2, 3, 3]) |
|
minor_codes = np.array([0, 1, 0, 1, 0, 1]) |
|
index_names = ["first", "second"] |
|
return MultiIndex( |
|
levels=[major_axis, minor_axis], |
|
codes=[major_codes, minor_codes], |
|
names=index_names, |
|
verify_integrity=False, |
|
) |
|
|
|
|
|
def _create_mi_with_dt64tz_level(): |
|
""" |
|
MultiIndex with a level that is a tzaware DatetimeIndex. |
|
""" |
|
|
|
return MultiIndex.from_product( |
|
[[1, 2], ["a", "b"], date_range("20130101", periods=3, tz="US/Eastern")], |
|
names=["one", "two", "three"], |
|
) |
|
|
|
|
|
indices_dict = { |
|
"string": Index([f"pandas_{i}" for i in range(100)]), |
|
"datetime": date_range("2020-01-01", periods=100), |
|
"datetime-tz": date_range("2020-01-01", periods=100, tz="US/Pacific"), |
|
"period": period_range("2020-01-01", periods=100, freq="D"), |
|
"timedelta": timedelta_range(start="1 day", periods=100, freq="D"), |
|
"range": RangeIndex(100), |
|
"int8": Index(np.arange(100), dtype="int8"), |
|
"int16": Index(np.arange(100), dtype="int16"), |
|
"int32": Index(np.arange(100), dtype="int32"), |
|
"int64": Index(np.arange(100), dtype="int64"), |
|
"uint8": Index(np.arange(100), dtype="uint8"), |
|
"uint16": Index(np.arange(100), dtype="uint16"), |
|
"uint32": Index(np.arange(100), dtype="uint32"), |
|
"uint64": Index(np.arange(100), dtype="uint64"), |
|
"float32": Index(np.arange(100), dtype="float32"), |
|
"float64": Index(np.arange(100), dtype="float64"), |
|
"bool-object": Index([True, False] * 5, dtype=object), |
|
"bool-dtype": Index([True, False] * 5, dtype=bool), |
|
"complex64": Index( |
|
np.arange(100, dtype="complex64") + 1.0j * np.arange(100, dtype="complex64") |
|
), |
|
"complex128": Index( |
|
np.arange(100, dtype="complex128") + 1.0j * np.arange(100, dtype="complex128") |
|
), |
|
"categorical": CategoricalIndex(list("abcd") * 25), |
|
"interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=101)), |
|
"empty": Index([]), |
|
"tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])), |
|
"mi-with-dt64tz-level": _create_mi_with_dt64tz_level(), |
|
"multi": _create_multiindex(), |
|
"repeats": Index([0, 0, 1, 1, 2, 2]), |
|
"nullable_int": Index(np.arange(100), dtype="Int64"), |
|
"nullable_uint": Index(np.arange(100), dtype="UInt16"), |
|
"nullable_float": Index(np.arange(100), dtype="Float32"), |
|
"nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"), |
|
"string-python": Index( |
|
pd.array([f"pandas_{i}" for i in range(100)], dtype="string[python]") |
|
), |
|
} |
|
if has_pyarrow: |
|
idx = Index(pd.array([f"pandas_{i}" for i in range(100)], dtype="string[pyarrow]")) |
|
indices_dict["string-pyarrow"] = idx |
|
|
|
|
|
@pytest.fixture(params=indices_dict.keys()) |
|
def index(request): |
|
""" |
|
Fixture for many "simple" kinds of indices. |
|
|
|
These indices are unlikely to cover corner cases, e.g. |
|
- no names |
|
- no NaTs/NaNs |
|
- no values near implementation bounds |
|
- ... |
|
""" |
|
|
|
return indices_dict[request.param].copy() |
|
|
|
|
|
|
|
index_fixture2 = index |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
key for key, value in indices_dict.items() if not isinstance(value, MultiIndex) |
|
] |
|
) |
|
def index_flat(request): |
|
""" |
|
index fixture, but excluding MultiIndex cases. |
|
""" |
|
key = request.param |
|
return indices_dict[key].copy() |
|
|
|
|
|
|
|
index_flat2 = index_flat |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
key |
|
for key, value in indices_dict.items() |
|
if not ( |
|
key.startswith(("int", "uint", "float")) |
|
or key in ["range", "empty", "repeats", "bool-dtype"] |
|
) |
|
and not isinstance(value, MultiIndex) |
|
] |
|
) |
|
def index_with_missing(request): |
|
""" |
|
Fixture for indices with missing values. |
|
|
|
Integer-dtype and empty cases are excluded because they cannot hold missing |
|
values. |
|
|
|
MultiIndex is excluded because isna() is not defined for MultiIndex. |
|
""" |
|
|
|
|
|
|
|
ind = indices_dict[request.param].copy(deep=True) |
|
vals = ind.values.copy() |
|
if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]: |
|
|
|
vals = ind.tolist() |
|
vals[0] = (None,) + vals[0][1:] |
|
vals[-1] = (None,) + vals[-1][1:] |
|
return MultiIndex.from_tuples(vals) |
|
else: |
|
vals[0] = None |
|
vals[-1] = None |
|
return type(ind)(vals) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
def string_series() -> Series: |
|
""" |
|
Fixture for Series of floats with Index of unique strings |
|
""" |
|
return Series( |
|
np.arange(30, dtype=np.float64) * 1.1, |
|
index=Index([f"i_{i}" for i in range(30)], dtype=object), |
|
name="series", |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def object_series() -> Series: |
|
""" |
|
Fixture for Series of dtype object with Index of unique strings |
|
""" |
|
data = [f"foo_{i}" for i in range(30)] |
|
index = Index([f"bar_{i}" for i in range(30)], dtype=object) |
|
return Series(data, index=index, name="objects", dtype=object) |
|
|
|
|
|
@pytest.fixture |
|
def datetime_series() -> Series: |
|
""" |
|
Fixture for Series of floats with DatetimeIndex |
|
""" |
|
return Series( |
|
np.random.default_rng(2).standard_normal(30), |
|
index=date_range("2000-01-01", periods=30, freq="B"), |
|
name="ts", |
|
) |
|
|
|
|
|
def _create_series(index): |
|
"""Helper for the _series dict""" |
|
size = len(index) |
|
data = np.random.default_rng(2).standard_normal(size) |
|
return Series(data, index=index, name="a", copy=False) |
|
|
|
|
|
_series = { |
|
f"series-with-{index_id}-index": _create_series(index) |
|
for index_id, index in indices_dict.items() |
|
} |
|
|
|
|
|
@pytest.fixture |
|
def series_with_simple_index(index) -> Series: |
|
""" |
|
Fixture for tests on series with changing types of indices. |
|
""" |
|
return _create_series(index) |
|
|
|
|
|
_narrow_series = { |
|
f"{dtype.__name__}-series": Series( |
|
range(30), index=[f"i-{i}" for i in range(30)], name="a", dtype=dtype |
|
) |
|
for dtype in tm.NARROW_NP_DTYPES |
|
} |
|
|
|
|
|
_index_or_series_objs = {**indices_dict, **_series, **_narrow_series} |
|
|
|
|
|
@pytest.fixture(params=_index_or_series_objs.keys()) |
|
def index_or_series_obj(request): |
|
""" |
|
Fixture for tests on indexes, series and series with a narrow dtype |
|
copy to avoid mutation, e.g. setting .name |
|
""" |
|
return _index_or_series_objs[request.param].copy(deep=True) |
|
|
|
|
|
_typ_objects_series = { |
|
f"{dtype.__name__}-series": Series(dtype) for dtype in tm.PYTHON_DATA_TYPES |
|
} |
|
|
|
|
|
_index_or_series_memory_objs = { |
|
**indices_dict, |
|
**_series, |
|
**_narrow_series, |
|
**_typ_objects_series, |
|
} |
|
|
|
|
|
@pytest.fixture(params=_index_or_series_memory_objs.keys()) |
|
def index_or_series_memory_obj(request): |
|
""" |
|
Fixture for tests on indexes, series, series with a narrow dtype and |
|
series with empty objects type |
|
copy to avoid mutation, e.g. setting .name |
|
""" |
|
return _index_or_series_memory_objs[request.param].copy(deep=True) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
def int_frame() -> DataFrame: |
|
""" |
|
Fixture for DataFrame of ints with index of unique strings |
|
|
|
Columns are ['A', 'B', 'C', 'D'] |
|
""" |
|
return DataFrame( |
|
np.ones((30, 4), dtype=np.int64), |
|
index=Index([f"foo_{i}" for i in range(30)], dtype=object), |
|
columns=Index(list("ABCD"), dtype=object), |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def float_frame() -> DataFrame: |
|
""" |
|
Fixture for DataFrame of floats with index of unique strings |
|
|
|
Columns are ['A', 'B', 'C', 'D']. |
|
""" |
|
return DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 4)), |
|
index=Index([f"foo_{i}" for i in range(30)]), |
|
columns=Index(list("ABCD")), |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def rand_series_with_duplicate_datetimeindex() -> Series: |
|
""" |
|
Fixture for Series with a DatetimeIndex that has duplicates. |
|
""" |
|
dates = [ |
|
datetime(2000, 1, 2), |
|
datetime(2000, 1, 2), |
|
datetime(2000, 1, 2), |
|
datetime(2000, 1, 3), |
|
datetime(2000, 1, 3), |
|
datetime(2000, 1, 3), |
|
datetime(2000, 1, 4), |
|
datetime(2000, 1, 4), |
|
datetime(2000, 1, 4), |
|
datetime(2000, 1, 5), |
|
] |
|
|
|
return Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
(Interval(left=0, right=5), IntervalDtype("int64", "right")), |
|
(Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")), |
|
(Period("2012-01", freq="M"), "period[M]"), |
|
(Period("2012-02-01", freq="D"), "period[D]"), |
|
( |
|
Timestamp("2011-01-01", tz="US/Eastern"), |
|
DatetimeTZDtype(unit="s", tz="US/Eastern"), |
|
), |
|
(Timedelta(seconds=500), "timedelta64[ns]"), |
|
] |
|
) |
|
def ea_scalar_and_dtype(request): |
|
return request.param |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(params=tm.arithmetic_dunder_methods) |
|
def all_arithmetic_operators(request): |
|
""" |
|
Fixture for dunder names for common arithmetic operations. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
operator.add, |
|
ops.radd, |
|
operator.sub, |
|
ops.rsub, |
|
operator.mul, |
|
ops.rmul, |
|
operator.truediv, |
|
ops.rtruediv, |
|
operator.floordiv, |
|
ops.rfloordiv, |
|
operator.mod, |
|
ops.rmod, |
|
operator.pow, |
|
ops.rpow, |
|
operator.eq, |
|
operator.ne, |
|
operator.lt, |
|
operator.le, |
|
operator.gt, |
|
operator.ge, |
|
operator.and_, |
|
ops.rand_, |
|
operator.xor, |
|
ops.rxor, |
|
operator.or_, |
|
ops.ror_, |
|
] |
|
) |
|
def all_binary_operators(request): |
|
""" |
|
Fixture for operator and roperator arithmetic, comparison, and logical ops. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
operator.add, |
|
ops.radd, |
|
operator.sub, |
|
ops.rsub, |
|
operator.mul, |
|
ops.rmul, |
|
operator.truediv, |
|
ops.rtruediv, |
|
operator.floordiv, |
|
ops.rfloordiv, |
|
operator.mod, |
|
ops.rmod, |
|
operator.pow, |
|
ops.rpow, |
|
] |
|
) |
|
def all_arithmetic_functions(request): |
|
""" |
|
Fixture for operator and roperator arithmetic functions. |
|
|
|
Notes |
|
----- |
|
This includes divmod and rdivmod, whereas all_arithmetic_operators |
|
does not. |
|
""" |
|
return request.param |
|
|
|
|
|
_all_numeric_reductions = [ |
|
"count", |
|
"sum", |
|
"max", |
|
"min", |
|
"mean", |
|
"prod", |
|
"std", |
|
"var", |
|
"median", |
|
"kurt", |
|
"skew", |
|
"sem", |
|
] |
|
|
|
|
|
@pytest.fixture(params=_all_numeric_reductions) |
|
def all_numeric_reductions(request): |
|
""" |
|
Fixture for numeric reduction names. |
|
""" |
|
return request.param |
|
|
|
|
|
_all_boolean_reductions = ["all", "any"] |
|
|
|
|
|
@pytest.fixture(params=_all_boolean_reductions) |
|
def all_boolean_reductions(request): |
|
""" |
|
Fixture for boolean reduction names. |
|
""" |
|
return request.param |
|
|
|
|
|
_all_reductions = _all_numeric_reductions + _all_boolean_reductions |
|
|
|
|
|
@pytest.fixture(params=_all_reductions) |
|
def all_reductions(request): |
|
""" |
|
Fixture for all (boolean + numeric) reduction names. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
operator.eq, |
|
operator.ne, |
|
operator.gt, |
|
operator.ge, |
|
operator.lt, |
|
operator.le, |
|
] |
|
) |
|
def comparison_op(request): |
|
""" |
|
Fixture for operator module comparison functions. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"]) |
|
def compare_operators_no_eq_ne(request): |
|
""" |
|
Fixture for dunder names for compare operations except == and != |
|
|
|
* >= |
|
* > |
|
* < |
|
* <= |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"] |
|
) |
|
def all_logical_operators(request): |
|
""" |
|
Fixture for dunder names for common logical operations |
|
|
|
* | |
|
* & |
|
* ^ |
|
""" |
|
return request.param |
|
|
|
|
|
_all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"] |
|
|
|
|
|
@pytest.fixture(params=_all_numeric_accumulations) |
|
def all_numeric_accumulations(request): |
|
""" |
|
Fixture for numeric accumulation names |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
def strict_data_files(pytestconfig): |
|
""" |
|
Returns the configuration for the test setting `--no-strict-data-files`. |
|
""" |
|
return pytestconfig.getoption("--no-strict-data-files") |
|
|
|
|
|
@pytest.fixture |
|
def datapath(strict_data_files: str) -> Callable[..., str]: |
|
""" |
|
Get the path to a data file. |
|
|
|
Parameters |
|
---------- |
|
path : str |
|
Path to the file, relative to ``pandas/tests/`` |
|
|
|
Returns |
|
------- |
|
path including ``pandas/tests``. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If the path doesn't exist and the --no-strict-data-files option is not set. |
|
""" |
|
BASE_PATH = os.path.join(os.path.dirname(__file__), "tests") |
|
|
|
def deco(*args): |
|
path = os.path.join(BASE_PATH, *args) |
|
if not os.path.exists(path): |
|
if strict_data_files: |
|
raise ValueError( |
|
f"Could not find file {path} and --no-strict-data-files is not set." |
|
) |
|
pytest.skip(f"Could not find {path}.") |
|
return path |
|
|
|
return deco |
|
|
|
|
|
|
|
|
|
|
|
TIMEZONES = [ |
|
None, |
|
"UTC", |
|
"US/Eastern", |
|
"Asia/Tokyo", |
|
"dateutil/US/Pacific", |
|
"dateutil/Asia/Singapore", |
|
"+01:15", |
|
"-02:15", |
|
"UTC+01:15", |
|
"UTC-02:15", |
|
tzutc(), |
|
tzlocal(), |
|
FixedOffset(300), |
|
FixedOffset(0), |
|
FixedOffset(-300), |
|
timezone.utc, |
|
timezone(timedelta(hours=1)), |
|
timezone(timedelta(hours=-1), name="foo"), |
|
] |
|
if zoneinfo is not None: |
|
TIMEZONES.extend( |
|
[ |
|
zoneinfo.ZoneInfo("US/Pacific"), |
|
zoneinfo.ZoneInfo("UTC"), |
|
] |
|
) |
|
TIMEZONE_IDS = [repr(i) for i in TIMEZONES] |
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS)) |
|
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS) |
|
def tz_naive_fixture(request): |
|
""" |
|
Fixture for trying timezones including default (None): {0} |
|
""" |
|
return request.param |
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:])) |
|
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:]) |
|
def tz_aware_fixture(request): |
|
""" |
|
Fixture for trying explicit timezones: {0} |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
tz_aware_fixture2 = tz_aware_fixture |
|
|
|
|
|
_UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc] |
|
if zoneinfo is not None: |
|
_UTCS.append(zoneinfo.ZoneInfo("UTC")) |
|
|
|
|
|
@pytest.fixture(params=_UTCS) |
|
def utc_fixture(request): |
|
""" |
|
Fixture to provide variants of UTC timezone strings and tzinfo objects. |
|
""" |
|
return request.param |
|
|
|
|
|
utc_fixture2 = utc_fixture |
|
|
|
|
|
@pytest.fixture(params=["s", "ms", "us", "ns"]) |
|
def unit(request): |
|
""" |
|
datetime64 units we support. |
|
""" |
|
return request.param |
|
|
|
|
|
unit2 = unit |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(params=tm.STRING_DTYPES) |
|
def string_dtype(request): |
|
""" |
|
Parametrized fixture for string dtypes. |
|
|
|
* str |
|
* 'str' |
|
* 'U' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
"string[python]", |
|
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")), |
|
] |
|
) |
|
def nullable_string_dtype(request): |
|
""" |
|
Parametrized fixture for string dtypes. |
|
|
|
* 'string[python]' |
|
* 'string[pyarrow]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
"python", |
|
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")), |
|
pytest.param("pyarrow_numpy", marks=td.skip_if_no("pyarrow")), |
|
] |
|
) |
|
def string_storage(request): |
|
""" |
|
Parametrized fixture for pd.options.mode.string_storage. |
|
|
|
* 'python' |
|
* 'pyarrow' |
|
* 'pyarrow_numpy' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
"numpy_nullable", |
|
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")), |
|
] |
|
) |
|
def dtype_backend(request): |
|
""" |
|
Parametrized fixture for pd.options.mode.string_storage. |
|
|
|
* 'python' |
|
* 'pyarrow' |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
string_storage2 = string_storage |
|
|
|
|
|
@pytest.fixture(params=tm.BYTES_DTYPES) |
|
def bytes_dtype(request): |
|
""" |
|
Parametrized fixture for bytes dtypes. |
|
|
|
* bytes |
|
* 'bytes' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.OBJECT_DTYPES) |
|
def object_dtype(request): |
|
""" |
|
Parametrized fixture for object dtypes. |
|
|
|
* object |
|
* 'object' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
"object", |
|
"string[python]", |
|
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")), |
|
pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")), |
|
] |
|
) |
|
def any_string_dtype(request): |
|
""" |
|
Parametrized fixture for string dtypes. |
|
* 'object' |
|
* 'string[python]' |
|
* 'string[pyarrow]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.DATETIME64_DTYPES) |
|
def datetime64_dtype(request): |
|
""" |
|
Parametrized fixture for datetime64 dtypes. |
|
|
|
* 'datetime64[ns]' |
|
* 'M8[ns]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.TIMEDELTA64_DTYPES) |
|
def timedelta64_dtype(request): |
|
""" |
|
Parametrized fixture for timedelta64 dtypes. |
|
|
|
* 'timedelta64[ns]' |
|
* 'm8[ns]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture |
|
def fixed_now_ts() -> Timestamp: |
|
""" |
|
Fixture emits fixed Timestamp.now() |
|
""" |
|
return Timestamp( |
|
year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22 |
|
) |
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES) |
|
def float_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for float dtypes. |
|
|
|
* float |
|
* 'float32' |
|
* 'float64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_EA_DTYPES) |
|
def float_ea_dtype(request): |
|
""" |
|
Parameterized fixture for float dtypes. |
|
|
|
* 'Float32' |
|
* 'Float64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_FLOAT_DTYPES) |
|
def any_float_dtype(request): |
|
""" |
|
Parameterized fixture for float dtypes. |
|
|
|
* float |
|
* 'float32' |
|
* 'float64' |
|
* 'Float32' |
|
* 'Float64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.COMPLEX_DTYPES) |
|
def complex_dtype(request): |
|
""" |
|
Parameterized fixture for complex dtypes. |
|
|
|
* complex |
|
* 'complex64' |
|
* 'complex128' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.COMPLEX_FLOAT_DTYPES) |
|
def complex_or_float_dtype(request): |
|
""" |
|
Parameterized fixture for complex and numpy float dtypes. |
|
|
|
* complex |
|
* 'complex64' |
|
* 'complex128' |
|
* float |
|
* 'float32' |
|
* 'float64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES) |
|
def any_signed_int_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for signed integer dtypes. |
|
|
|
* int |
|
* 'int8' |
|
* 'int16' |
|
* 'int32' |
|
* 'int64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES) |
|
def any_unsigned_int_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for unsigned integer dtypes. |
|
|
|
* 'uint8' |
|
* 'uint16' |
|
* 'uint32' |
|
* 'uint64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES) |
|
def any_int_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for any integer dtype. |
|
|
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES) |
|
def any_int_ea_dtype(request): |
|
""" |
|
Parameterized fixture for any nullable integer dtype. |
|
|
|
* 'UInt8' |
|
* 'Int8' |
|
* 'UInt16' |
|
* 'Int16' |
|
* 'UInt32' |
|
* 'Int32' |
|
* 'UInt64' |
|
* 'Int64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_DTYPES) |
|
def any_int_dtype(request): |
|
""" |
|
Parameterized fixture for any nullable integer dtype. |
|
|
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
* 'UInt8' |
|
* 'Int8' |
|
* 'UInt16' |
|
* 'Int16' |
|
* 'UInt32' |
|
* 'Int32' |
|
* 'UInt64' |
|
* 'Int64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES) |
|
def any_numeric_ea_dtype(request): |
|
""" |
|
Parameterized fixture for any nullable integer dtype and |
|
any float ea dtypes. |
|
|
|
* 'UInt8' |
|
* 'Int8' |
|
* 'UInt16' |
|
* 'Int16' |
|
* 'UInt32' |
|
* 'Int32' |
|
* 'UInt64' |
|
* 'Int64' |
|
* 'Float32' |
|
* 'Float64' |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
|
|
@pytest.fixture( |
|
params=tm.ALL_INT_EA_DTYPES |
|
+ tm.FLOAT_EA_DTYPES |
|
+ tm.ALL_INT_PYARROW_DTYPES_STR_REPR |
|
+ tm.FLOAT_PYARROW_DTYPES_STR_REPR |
|
) |
|
def any_numeric_ea_and_arrow_dtype(request): |
|
""" |
|
Parameterized fixture for any nullable integer dtype and |
|
any float ea dtypes. |
|
|
|
* 'UInt8' |
|
* 'Int8' |
|
* 'UInt16' |
|
* 'Int16' |
|
* 'UInt32' |
|
* 'Int32' |
|
* 'UInt64' |
|
* 'Int64' |
|
* 'Float32' |
|
* 'Float64' |
|
* 'uint8[pyarrow]' |
|
* 'int8[pyarrow]' |
|
* 'uint16[pyarrow]' |
|
* 'int16[pyarrow]' |
|
* 'uint32[pyarrow]' |
|
* 'int32[pyarrow]' |
|
* 'uint64[pyarrow]' |
|
* 'int64[pyarrow]' |
|
* 'float32[pyarrow]' |
|
* 'float64[pyarrow]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES) |
|
def any_signed_int_ea_dtype(request): |
|
""" |
|
Parameterized fixture for any signed nullable integer dtype. |
|
|
|
* 'Int8' |
|
* 'Int16' |
|
* 'Int32' |
|
* 'Int64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES) |
|
def any_real_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for any (purely) real numeric dtype. |
|
|
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
* float |
|
* 'float32' |
|
* 'float64' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_REAL_DTYPES) |
|
def any_real_numeric_dtype(request): |
|
""" |
|
Parameterized fixture for any (purely) real numeric dtype. |
|
|
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
* float |
|
* 'float32' |
|
* 'float64' |
|
|
|
and associated ea dtypes. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_NUMPY_DTYPES) |
|
def any_numpy_dtype(request): |
|
""" |
|
Parameterized fixture for all numpy dtypes. |
|
|
|
* bool |
|
* 'bool' |
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
* float |
|
* 'float32' |
|
* 'float64' |
|
* complex |
|
* 'complex64' |
|
* 'complex128' |
|
* str |
|
* 'str' |
|
* 'U' |
|
* bytes |
|
* 'bytes' |
|
* 'datetime64[ns]' |
|
* 'M8[ns]' |
|
* 'timedelta64[ns]' |
|
* 'm8[ns]' |
|
* object |
|
* 'object' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_REAL_NULLABLE_DTYPES) |
|
def any_real_nullable_dtype(request): |
|
""" |
|
Parameterized fixture for all real dtypes that can hold NA. |
|
|
|
* float |
|
* 'float32' |
|
* 'float64' |
|
* 'Float32' |
|
* 'Float64' |
|
* 'UInt8' |
|
* 'UInt16' |
|
* 'UInt32' |
|
* 'UInt64' |
|
* 'Int8' |
|
* 'Int16' |
|
* 'Int32' |
|
* 'Int64' |
|
* 'uint8[pyarrow]' |
|
* 'uint16[pyarrow]' |
|
* 'uint32[pyarrow]' |
|
* 'uint64[pyarrow]' |
|
* 'int8[pyarrow]' |
|
* 'int16[pyarrow]' |
|
* 'int32[pyarrow]' |
|
* 'int64[pyarrow]' |
|
* 'float[pyarrow]' |
|
* 'double[pyarrow]' |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=tm.ALL_NUMERIC_DTYPES) |
|
def any_numeric_dtype(request): |
|
""" |
|
Parameterized fixture for all numeric dtypes. |
|
|
|
* int |
|
* 'int8' |
|
* 'uint8' |
|
* 'int16' |
|
* 'uint16' |
|
* 'int32' |
|
* 'uint32' |
|
* 'int64' |
|
* 'uint64' |
|
* float |
|
* 'float32' |
|
* 'float64' |
|
* complex |
|
* 'complex64' |
|
* 'complex128' |
|
* 'UInt8' |
|
* 'Int8' |
|
* 'UInt16' |
|
* 'Int16' |
|
* 'UInt32' |
|
* 'Int32' |
|
* 'UInt64' |
|
* 'Int64' |
|
* 'Float32' |
|
* 'Float64' |
|
""" |
|
return request.param |
|
|
|
|
|
|
|
_any_skipna_inferred_dtype = [ |
|
("string", ["a", np.nan, "c"]), |
|
("string", ["a", pd.NA, "c"]), |
|
("mixed", ["a", pd.NaT, "c"]), |
|
("bytes", [b"a", np.nan, b"c"]), |
|
("empty", [np.nan, np.nan, np.nan]), |
|
("empty", []), |
|
("mixed-integer", ["a", np.nan, 2]), |
|
("mixed", ["a", np.nan, 2.0]), |
|
("floating", [1.0, np.nan, 2.0]), |
|
("integer", [1, np.nan, 2]), |
|
("mixed-integer-float", [1, np.nan, 2.0]), |
|
("decimal", [Decimal(1), np.nan, Decimal(2)]), |
|
("boolean", [True, np.nan, False]), |
|
("boolean", [True, pd.NA, False]), |
|
("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]), |
|
("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]), |
|
("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]), |
|
("complex", [1 + 1j, np.nan, 2 + 2j]), |
|
|
|
|
|
|
|
("timedelta", [timedelta(1), np.nan, timedelta(2)]), |
|
("time", [time(1), np.nan, time(2)]), |
|
("period", [Period(2013), pd.NaT, Period(2018)]), |
|
("interval", [Interval(0, 1), np.nan, Interval(0, 2)]), |
|
] |
|
ids, _ = zip(*_any_skipna_inferred_dtype) |
|
|
|
|
|
@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids) |
|
def any_skipna_inferred_dtype(request): |
|
""" |
|
Fixture for all inferred dtypes from _libs.lib.infer_dtype |
|
|
|
The covered (inferred) types are: |
|
* 'string' |
|
* 'empty' |
|
* 'bytes' |
|
* 'mixed' |
|
* 'mixed-integer' |
|
* 'mixed-integer-float' |
|
* 'floating' |
|
* 'integer' |
|
* 'decimal' |
|
* 'boolean' |
|
* 'datetime64' |
|
* 'datetime' |
|
* 'date' |
|
* 'timedelta' |
|
* 'time' |
|
* 'period' |
|
* 'interval' |
|
|
|
Returns |
|
------- |
|
inferred_dtype : str |
|
The string for the inferred dtype from _libs.lib.infer_dtype |
|
values : np.ndarray |
|
An array of object dtype that will be inferred to have |
|
`inferred_dtype` |
|
|
|
Examples |
|
-------- |
|
>>> from pandas._libs import lib |
|
>>> |
|
>>> def test_something(any_skipna_inferred_dtype): |
|
... inferred_dtype, values = any_skipna_inferred_dtype |
|
... # will pass |
|
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype |
|
""" |
|
inferred_dtype, values = request.param |
|
values = np.array(values, dtype=object) |
|
|
|
|
|
return inferred_dtype, values |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture |
|
def ip(): |
|
""" |
|
Get an instance of IPython.InteractiveShell. |
|
|
|
Will raise a skip if IPython is not installed. |
|
""" |
|
pytest.importorskip("IPython", minversion="6.0.0") |
|
from IPython.core.interactiveshell import InteractiveShell |
|
|
|
|
|
from traitlets.config import Config |
|
|
|
c = Config() |
|
c.HistoryManager.hist_file = ":memory:" |
|
|
|
return InteractiveShell(config=c) |
|
|
|
|
|
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"]) |
|
def spmatrix(request): |
|
""" |
|
Yields scipy sparse matrix classes. |
|
""" |
|
sparse = pytest.importorskip("scipy.sparse") |
|
|
|
return getattr(sparse, request.param + "_matrix") |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
getattr(pd.offsets, o) |
|
for o in pd.offsets.__all__ |
|
if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick" |
|
] |
|
) |
|
def tick_classes(request): |
|
""" |
|
Fixture for Tick based datetime offsets available for a time series. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[None, lambda x: x]) |
|
def sort_by_key(request): |
|
""" |
|
Simple fixture for testing keys in sorting methods. |
|
Tests None (no key) and the identity key. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
("foo", None, None), |
|
("Egon", "Venkman", None), |
|
("NCC1701D", "NCC1701D", "NCC1701D"), |
|
|
|
(np.nan, np.nan, np.nan), |
|
(np.nan, pd.NaT, None), |
|
(np.nan, pd.NA, None), |
|
(pd.NA, pd.NA, pd.NA), |
|
] |
|
) |
|
def names(request) -> tuple[Hashable, Hashable, Hashable]: |
|
""" |
|
A 3-tuple of names, the first two for operands, the last for a result. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc]) |
|
def indexer_sli(request): |
|
""" |
|
Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.loc, tm.iloc]) |
|
def indexer_li(request): |
|
""" |
|
Parametrize over loc.__getitem__, iloc.__getitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.iloc]) |
|
def indexer_si(request): |
|
""" |
|
Parametrize over __setitem__, iloc.__setitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.loc]) |
|
def indexer_sl(request): |
|
""" |
|
Parametrize over __setitem__, loc.__setitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.at, tm.loc]) |
|
def indexer_al(request): |
|
""" |
|
Parametrize over at.__setitem__, loc.__setitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture(params=[tm.iat, tm.iloc]) |
|
def indexer_ial(request): |
|
""" |
|
Parametrize over iat.__setitem__, iloc.__setitem__ |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture |
|
def using_array_manager() -> bool: |
|
""" |
|
Fixture to check if the array manager is being used. |
|
""" |
|
return _get_option("mode.data_manager", silent=True) == "array" |
|
|
|
|
|
@pytest.fixture |
|
def using_copy_on_write() -> bool: |
|
""" |
|
Fixture to check if Copy-on-Write is enabled. |
|
""" |
|
return ( |
|
pd.options.mode.copy_on_write is True |
|
and _get_option("mode.data_manager", silent=True) == "block" |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def warn_copy_on_write() -> bool: |
|
""" |
|
Fixture to check if Copy-on-Write is in warning mode. |
|
""" |
|
return ( |
|
pd.options.mode.copy_on_write == "warn" |
|
and _get_option("mode.data_manager", silent=True) == "block" |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def using_infer_string() -> bool: |
|
""" |
|
Fixture to check if infer string option is enabled. |
|
""" |
|
return pd.options.future.infer_string is True |
|
|
|
|
|
warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"] |
|
if zoneinfo is not None: |
|
warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw")) |
|
|
|
|
|
@pytest.fixture(params=warsaws) |
|
def warsaw(request) -> str: |
|
""" |
|
tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture() |
|
def arrow_string_storage(): |
|
return ("pyarrow", "pyarrow_numpy") |
|
|