|
---
|
|
license: apache-2.0
|
|
---
|
|
|
|
We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
|
|
|
|
Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
|
|
|
|
This is the 6.7B version of AutoCoder.
|
|
|
|
See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
|
|
|
|
Simple test script:
|
|
|
|
```
|
|
model_path = ""
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
device_map="auto")
|
|
|
|
HumanEval = load_dataset("evalplus/humanevalplus")
|
|
|
|
Input = "" # input your question here
|
|
|
|
messages=[
|
|
{ 'role': 'user', 'content': Input}
|
|
]
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
|
|
return_tensors="pt").to(model.device)
|
|
|
|
outputs = model.generate(inputs,
|
|
max_new_tokens=1024,
|
|
do_sample=False,
|
|
temperature=0.0,
|
|
top_p=1.0,
|
|
num_return_sequences=1,
|
|
eos_token_id=tokenizer.eos_token_id)
|
|
|
|
answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
|
``` |