Bisher's picture
Model save
0a86328 verified
metadata
license: apache-2.0
base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen_further
    results: []

wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen_further

This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3702
  • Accuracy: 0.9173
  • Precision: 0.9193
  • Recall: 0.9173
  • F1: 0.8917
  • Tp: 384
  • Tn: 17889
  • Fn: 1623
  • Fp: 24
  • Eer: 0.0762
  • Min Tdcf: 0.0323
  • Auc Roc: 0.9561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 152
  • eval_batch_size: 152
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 608
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Tp Tn Fn Fp Eer Min Tdcf Auc Roc
0.0237 0.0490 10 0.3313 0.9162 0.9174 0.9162 0.8897 364 17886 1643 27 0.0829 0.0335 0.9725
0.0219 0.0979 20 0.3291 0.9147 0.9168 0.9147 0.8865 328 17892 1679 21 0.0809 0.0328 0.9736
0.0202 0.1469 30 0.3233 0.9173 0.9189 0.9173 0.8918 386 17887 1621 26 0.0765 0.0323 0.9738
0.0205 0.1958 40 0.3702 0.9173 0.9193 0.9173 0.8917 384 17889 1623 24 0.0762 0.0323 0.9561

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1