|
--- |
|
language: |
|
- mn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: mongolian-twitter-roberta-base-sentiment-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mongolian-twitter-roberta-base-sentiment-ner |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1674 |
|
- Precision: 0.7560 |
|
- Recall: 0.8395 |
|
- F1: 0.7955 |
|
- Accuracy: 0.9540 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4091 | 1.0 | 477 | 0.2507 | 0.5166 | 0.6789 | 0.5868 | 0.9162 | |
|
| 0.2467 | 2.0 | 954 | 0.2363 | 0.6415 | 0.7465 | 0.6900 | 0.9243 | |
|
| 0.2051 | 3.0 | 1431 | 0.1921 | 0.6732 | 0.7857 | 0.7251 | 0.9374 | |
|
| 0.1738 | 4.0 | 1908 | 0.1746 | 0.6965 | 0.8038 | 0.7463 | 0.9440 | |
|
| 0.1475 | 5.0 | 2385 | 0.1680 | 0.7217 | 0.8172 | 0.7665 | 0.9472 | |
|
| 0.1305 | 6.0 | 2862 | 0.1736 | 0.7209 | 0.8228 | 0.7685 | 0.9483 | |
|
| 0.1116 | 7.0 | 3339 | 0.1621 | 0.7337 | 0.8296 | 0.7787 | 0.9518 | |
|
| 0.099 | 8.0 | 3816 | 0.1684 | 0.7353 | 0.8318 | 0.7806 | 0.9508 | |
|
| 0.0882 | 9.0 | 4293 | 0.1666 | 0.7625 | 0.8417 | 0.8002 | 0.9547 | |
|
| 0.0799 | 10.0 | 4770 | 0.1674 | 0.7560 | 0.8395 | 0.7955 | 0.9540 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|