librarian-bot's picture
Librarian Bot: Add base_model information to model
4234ceb
|
raw
history blame
2.47 kB
metadata
language:
  - mn
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: cardiffnlp/twitter-roberta-base-sentiment
model-index:
  - name: mongolian-twitter-roberta-base-sentiment-ner
    results: []

mongolian-twitter-roberta-base-sentiment-ner

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1674
  • Precision: 0.7560
  • Recall: 0.8395
  • F1: 0.7955
  • Accuracy: 0.9540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4091 1.0 477 0.2507 0.5166 0.6789 0.5868 0.9162
0.2467 2.0 954 0.2363 0.6415 0.7465 0.6900 0.9243
0.2051 3.0 1431 0.1921 0.6732 0.7857 0.7251 0.9374
0.1738 4.0 1908 0.1746 0.6965 0.8038 0.7463 0.9440
0.1475 5.0 2385 0.1680 0.7217 0.8172 0.7665 0.9472
0.1305 6.0 2862 0.1736 0.7209 0.8228 0.7685 0.9483
0.1116 7.0 3339 0.1621 0.7337 0.8296 0.7787 0.9518
0.099 8.0 3816 0.1684 0.7353 0.8318 0.7806 0.9508
0.0882 9.0 4293 0.1666 0.7625 0.8417 0.8002 0.9547
0.0799 10.0 4770 0.1674 0.7560 0.8395 0.7955 0.9540

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3