en-ar-model / README.md
BoghdadyJR's picture
English to arabic model trained using Quran-Classical-Arabic-English-Parallel-texts
bb8dc0f verified
|
raw
history blame
2.42 kB
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ar
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: en-ar-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/i9kdffyd)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/i9kdffyd)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/i9kdffyd)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/i9kdffyd)
# en-ar-model
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Bleu: 49.2887
- Gen Len: 28.6434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.1741 | 1.0 | 1250 | 0.1632 | 49.2836 | 28.626 |
| 0.1551 | 2.0 | 2500 | 0.1630 | 49.3258 | 28.6074 |
| 0.144 | 3.0 | 3750 | 0.1630 | 49.2887 | 28.6434 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1