BramVanroy's picture
Update README.md
d50b348 verified
|
raw
history blame
2.58 kB
---
license: cc-by-nc-4.0
language:
- nl
tags:
- gguf
- llamacpp
- dpo
- geitje
- conversational
datasets:
- BramVanroy/ultra_feedback_dutch
---
<p align="center" style="margin:0;padding:0">
<img src="https://huggingface.co/BramVanroy/GEITje-7B-ultra/resolve/main/geitje-ultra-banner.png" alt="GEITje Ultra banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
<div style="margin:auto; text-align:center">
<h1 style="margin-bottom: 0">GEITje 7B ultra (GGUF version)</h1>
<em>A conversational model for Dutch, aligned through AI feedback.</em>
</div>
This is a `Q5_K_M` GGUF version of [BramVanroy/GEITje-7B-ultra](https://huggingface.co/BramVanroy/GEITje-7B-ultra), a powerful Dutch chatbot, which ultimately is Mistral-based model, further pretrained on Dutch and additionally treated with supervised-finetuning and DPO alignment. For more information on the model, data, licensing, usage, see the main model's README.
## Usage
### LM Studio
You can use this model in [LM Studio](https://lmstudio.ai/), an easy-to-use interface to locally run optimized models. Simply search for `BramVanroy/GEITje-7B-ultra-GGUF`, and download the available file.
### Ollama
The model is available on `ollama` and can be easily run as follows:
```shell
ollama run bramvanroy/geitje-7b-ultra-gguf
```
To reproduce, i.e. to create the ollama files manually instead of downloading them via ollama, follow the next steps.
First download the [GGUF file](https://huggingface.co/BramVanroy/GEITje-7B-ultra-GGUF/resolve/main/GEITje-7B-ultra-Q5_K_M.gguf?download=true) and [Modelfile](https://huggingface.co/BramVanroy/GEITje-7B-ultra-GGUF/resolve/main/Modelfile?download=true) to your computer. You can adapt the Modelfile as you wish.
Then, create the ollama model and run it.
```shelll
ollama create geitje-7b-ultra-gguf -f ./Modelfile
ollama run geitje-7b-ultra-gguf
```
## Reproduce this GGUF version from the non-quantized model
Assuming you have installed and build llama cpp, current working directory is the `build` directory in llamacpp.
Download initial model (probaby a huggingface-cli alternative exists, too...)
```python
from huggingface_hub import snapshot_download
model_id = "BramVanroy/GEITje-7B-ultra"
snapshot_download(repo_id=model_id, local_dir="geitje-ultra-hf", local_dir_use_symlinks=False)
```
Convert to GGML format
```shell
# Convert to GGML format
python convert.py build/geitje-ultra-hf/
cd build
# Quantize to Q5_K_M
bin/quantize geitje-ultra-hf/ggml-model-f32.gguf geitje-ultra-hf/GEITje-7B-ultra-Q5_K_M.gguf Q5_K_M
```