metadata
license: cc-by-nc-4.0
base_model: BramVanroy/GEITje-ultra-sft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- BramVanroy/ultra_feedback_dutch
model-index:
- name: GEITje-ultra-dpo-5e-7lr-128tbs-0.1b
results: []
GEITje-ultra-dpo-5e-7lr-128tbs-0.1b
This model is a fine-tuned version of BramVanroy/GEITje-ultra-sft on the BramVanroy/ultra_feedback_dutch dataset. It achieves the following results on the evaluation set:
- Loss: 0.0138
- Rewards/chosen: -2.1351
- Rewards/rejected: -13.8922
- Rewards/accuracies: 0.9950
- Rewards/margins: 11.7570
- Logps/rejected: -565.1809
- Logps/chosen: -519.8008
- Logits/rejected: -3.0261
- Logits/chosen: -2.9779
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.03 | 0.22 | 100 | 0.0260 | -0.9740 | -9.8635 | 0.9913 | 8.8895 | -524.8940 | -508.1891 | -3.0753 | -3.0315 |
0.0184 | 0.44 | 200 | 0.0164 | -1.7162 | -12.4772 | 0.9926 | 10.7610 | -551.0317 | -515.6115 | -3.0349 | -2.9873 |
0.0121 | 0.66 | 300 | 0.0142 | -2.0575 | -13.6818 | 0.9938 | 11.6244 | -563.0778 | -519.0242 | -3.0325 | -2.9835 |
0.0198 | 0.88 | 400 | 0.0139 | -2.1431 | -13.8857 | 0.9950 | 11.7426 | -565.1163 | -519.8801 | -3.0293 | -2.9801 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0