fietje-2-chat / README.md
BramVanroy's picture
Model save
394b5d5 verified
|
raw
history blame
2.13 kB
---
license: mit
base_model: BramVanroy/fietje-2b-sft
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: fietje-2b-dpo-lr2.0e-6-beta0.2-gradaccum2-v6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fietje-2b-dpo-lr2.0e-6-beta0.2-gradaccum2-v6
This model is a fine-tuned version of [BramVanroy/fietje-2b-sft](https://huggingface.co/BramVanroy/fietje-2b-sft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2842
- Rewards/chosen: -1.1549
- Rewards/rejected: -3.6363
- Rewards/accuracies: 0.8867
- Rewards/margins: 2.4815
- Logps/rejected: -657.6813
- Logps/chosen: -451.3364
- Logits/rejected: -1.2868
- Logits/chosen: -1.3528
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.2515 | 1.0 | 1166 | 0.2842 | -1.1549 | -3.6363 | 0.8867 | 2.4815 | -657.6813 | -451.3364 | -1.2868 | -1.3528 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2