fietje-2-chat / README.md
BramVanroy's picture
Update README.md
82f55b9 verified
|
raw
history blame
5.45 kB
metadata
language:
  - nl
license: mit
tags:
  - trl
  - fietje
  - alignment-handbook
  - dpo
base_model: BramVanroy/fietje-2-instruct
datasets:
  - BramVanroy/ultra_feedback_dutch_cleaned
  - BramVanroy/orca_dpo_pairs_dutch_cleaned
pipeline_tag: text-generation
inference: false
model-index:
  - name: fietje-2-chat
    results: []

Fietje banner

Fietje 2 Chat

An open and efficient LLM for Dutch

πŸ‘±β€β™€οΈ Base version - πŸ€– Instruct version - πŸ’¬ Chat version (this one) - πŸš€ GGUF of Chat

Chat with Fietje here!

This is the chat version of Fietje, a DPO-tuned (aligned) continuation on the instruct version. Fietje is an adapated version of microsoft/phi-2, tailored to Dutch text generation by training on 28B tokens. It is small and efficient with a size of 2.7 billion parameters while performing almost on par with more powerful Dutch LLMs of twice its size like GEITje 7B Ultra.

A thorough description of the creation and evaluation of Fietje as well as usage examples are available in this Github repository.

Citation

If you use Fietje or the CulturaX + Wikipedia filtered subset in your work, please cite to the following paper:

@misc{vanroy2024fietjeopenefficientllm,
      title={Fietje: An open, efficient LLM for Dutch}, 
      author={Bram Vanroy},
      year={2024},
      eprint={2412.15450},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.15450}, 
}

Intended uses & limitations

The same limitations as phi-2, and LLMs in general, apply here. LLMs hallucinate, make mistakes, and should not be trusted. Use at your own risk!

Training and evaluation data

Fietje 2 Chat was finetuned from the instruct model on the following datasets. Number of training samples per dataset given in brackets, totalling 18,653 samples.

A lot of different learning rates, beta, en batch sizes were investigated in search of a converging combination. You can find them all in the W&B runs.

Training procedure

I am thankful to the Flemish Supercomputer Center (VSC) for providing the computational power to accomplish this project. Accounting for waiting for jobs, training a single run took around nine hours on one A100 80GB.

Training was done with the wonderful alignment-handbook, using DeepSpeed as a back-end. Exact training recipes and SLURM script are given in the Github repository.

Training hyperparameters

The following hyperparameters were used during training:

  • beta: 0.2
  • learning_rate: 2e-06
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.2515 1.0 1166 0.2842 -1.1549 -3.6363 0.8867 2.4815 -657.6813 -451.3364 -1.2868 -1.3528

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2